Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synchronization of transaction pools (mempools) has shown potential for improving the performance and block propagation delay of state-of-the-art blockchains. Indeed, various heuristics have been proposed in the literature to incorporate early exchanges of unconfirmed transactions into the block propagation protocol. In this work, we take a different approach, maintaining transaction synchronization externally (and independently) of the block propagation channel. In the process, we formalize the synchronization problem within a graph theoretic framework and introduce a novel algorithm (SREP - Set Reconciliation-Enhanced Propagation) with quantifiable guarantees. We analyze the algorithm’s performance for various realistic network topologies, and show that it converges on static connected graphs in a time bounded by the diameter of the graph. In graphs with dynamic edges, SREP converges in an expected time that is linear in the number of nodes. We confirm our analytical findings through extensive simulations that include comparisons with MempoolSync, a recent approach from the literature. Our simulations show that SREP incurs reasonable bandwidth overhead and scales gracefully with the size of the network (unlike MempoolSync).more » « less
-
Successful containment of the Coronavirus pandemic rests on the ability to quickly and reliably identify those who have been in close proximity to a contagious individual. Existing tools for doing so rely on the collection of exact location information of individuals over lengthy time periods, and combining this information with other personal information. This unprecedented encroachment on individual privacy at national scales has created an outcry and risks rejection of these tools. We propose an alternative: an extremely simple scheme for providing fine-grained and timely alerts to users who have been in the close vicinity of an infected individual. Crucially, this is done while preserving the anonymity of all individuals, and without collecting or storing any personal information or location history. Our approach is based on using short-range communication mechanisms, like Bluetooth, that are available in all modern cell phones. It can be deployed with very little infrastructure, and incurs a relatively low false-positive rate compared to other collocation methods. We also describe a number of extensions and tradeoffs. We believe that the privacy guarantees provided by the scheme will encourage quick and broad voluntary adoption. When combined with sufficient testing capacity and existing best practices from healthcare professionals, we hope that this may significantly reduce the infection rate.more » « less
-
Recent developments in online tracking make it harder for individuals to detect and block trackers. Some sites have deployed indirect tracking methods, which attempt to uniquely identify a device by asking the browser to perform a seemingly-unrelated task. One type of indirect tracking, Canvas fingerprinting, causes the browser to render a graphic recording rendering statistics as a unique identifier. In this work, we observe how indirect device fingerprinting methods are disclosed in privacy policies, and consider whether the disclosures are sufficient to enable website visitors to block the tracking methods. We compare these disclosures to the disclosure of direct fingerprinting methods on the same websites. Our case study analyzes one indirect fingerprinting technique, Canvas fingerprinting. We use an existing automated detector of this fingerprinting technique to conservatively detect its use on Alexa Top 500 websites that cater to United States consumers, and we examine the privacy policies of the resulting 28 websites. Disclosures of indirect fingerprinting vary in specificity. None described the specific methods with enough granularity to know the website used Canvas fingerprinting. Conversely, many sites did provide enough detail about usage of direct fingerprinting methods to allow a website visitor to reliably detect and block those techniques. We conclude that indirect fingerprinting methods are often difficult to detect and are not identified with specificity in privacy policies. This makes indirect fingerprinting more difficult to block, and therefore risks disturbing the tentative armistice between individuals and websites currently in place for direct fingerprinting. This paper illustrates differences in fingerprinting approaches, and explains why technologists, technology lawyers, and policymakers need to appreciate the challenges of indirect fingerprinting.more » « less
An official website of the United States government

Full Text Available