skip to main content

Search for: All records

Creators/Authors contains: "Tran, Nhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Efficient machine learning implementations optimized for inference in hardware have wide-ranging benefits, depending on the application, from lower inference latency to higher data throughput and reduced energy consumption. Two popular techniques for reducing computation in neural networks are pruning, removing insignificant synapses, and quantization, reducing the precision of the calculations. In this work, we explore the interplay between pruning and quantization during the training of neural networks for ultra low latency applications targeting high energy physics use cases. Techniques developed for this study have potential applications across many other domains. We study various configurations of pruning during quantization-aware training, whichmore »we term quantization-aware pruning , and the effect of techniques like regularization, batch normalization, and different pruning schemes on performance, computational complexity, and information content metrics. We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task. Further, quantization-aware pruning typically performs similar to or better in terms of computational efficiency compared to other neural architecture search techniques like Bayesian optimization. Surprisingly, while networks with different training configurations can have similar performance for the benchmark application, the information content in the network can vary significantly, affecting its generalizability.« less
    Free, publicly-accessible full text available July 9, 2022
  2. Free, publicly-accessible full text available October 1, 2022
  3. Mixed Reality visualizations provide a powerful new approach for enabling gestural capabilities on non-humanoid robots. This paper explores two different categories of mixed-reality deictic gestures for armless robots: a virtual arrow positioned over a target referent (a non-ego-sensitive allocentric gesture) and a virtual arm positioned over the gesturing robot (an ego-sensitive allocentric gesture). Specifically, we present the results of a within-subjects Mixed Reality HRI experiment (N=23) exploring the trade-offs between these two types of gestures with respect to both objective performance and subjective social perceptions. Our results show a clear trade-off between performance and social perception, with non-ego-sensitive allocentric gesturesmore »enabling faster reaction time and higher accuracy, but ego-sensitive gestures enabling higher perceived social presence, anthropomorphism, and likability.« less
    Free, publicly-accessible full text available March 8, 2022
  4. Abstract Radiogenomics uses machine-learning (ML) to directly connect the morphologic and physiological appearance of tumors on clinical imaging with underlying genomic features. Despite extensive growth in the area of radiogenomics across many cancers, and its potential role in advancing clinical decision making, no published studies have directly addressed uncertainty in these model predictions. We developed a radiogenomics ML model to quantify uncertainty using transductive Gaussian Processes (GP) and a unique dataset of 95 image-localized biopsies with spatially matched MRI from 25 untreated Glioblastoma (GBM) patients. The model generated predictions for regional EGFR amplification status (a common and important target inmore »GBM) to resolve the intratumoral genetic heterogeneity across each individual tumor—a key factor for future personalized therapeutic paradigms. The model used probability distributions for each sample prediction to quantify uncertainty, and used transductive learning to reduce the overall uncertainty. We compared predictive accuracy and uncertainty of the transductive learning GP model against a standard GP model using leave-one-patient-out cross validation. Additionally, we used a separate dataset containing 24 image-localized biopsies from 7 high-grade glioma patients to validate the model. Predictive uncertainty informed the likelihood of achieving an accurate sample prediction. When stratifying predictions based on uncertainty, we observed substantially higher performance in the group cohort (75% accuracy, n = 95) and amongst sample predictions with the lowest uncertainty (83% accuracy, n = 72) compared to predictions with higher uncertainty (48% accuracy, n = 23), due largely to data interpolation (rather than extrapolation). On the separate validation set, our model achieved 78% accuracy amongst the sample predictions with lowest uncertainty. We present a novel approach to quantify radiogenomics uncertainty to enhance model performance and clinical interpretability. This should help integrate more reliable radiogenomics models for improved medical decision-making.« less
    Free, publicly-accessible full text available December 1, 2022
  5. We present the first experiment analyzing the effectiveness of robot-generated mixed reality gestures using real robotic and mixed reality hardware. Our findings demonstrate how these gestures increase user effectiveness by decreasing user response time during visual search tasks, and show that robots can safely pair longer, more natural referring expressions with mixed reality gestures without worrying about cognitively overloading their interlocutors.
    Free, publicly-accessible full text available March 8, 2022
  6. Free, publicly-accessible full text available August 1, 2022
  7. Free, publicly-accessible full text available July 16, 2022
  8. Advancements in ultra-low-power tiny machine learning (TinyML) systems promise to unlock an entirely new class of smart applications. However, continued progress is limited by the lack of a widely accepted and easily reproducible benchmark for these systems. To meet this need, we present MLPerf Tiny, the first industry-standard benchmark suite for ultra-low-power tiny machine learning systems. The benchmark suite is the collaborative effort of more than 50 organizations from industry and academia and reflects the needs of the community. MLPerf Tiny measures the accuracy, latency, and energy of machine learning inference to properly evaluate the tradeoffs between systems. Additionally, MLPerfmore »Tiny implements a modular design that enables benchmark submitters to show the benefits of their product, regardless of where it falls on the ML deployment stack, in a fair and reproducible manner. The suite features four benchmarks: keyword spotting, visual wake words, image classification, and anomaly detection.« less
    Free, publicly-accessible full text available August 1, 2022
  9. Free, publicly-accessible full text available April 23, 2022
  10. Machine learning algorithms are becoming increasingly prevalent and performant in the reconstruction of events in accelerator-based neutrino experiments. These sophisticated algorithms can be computationally expensive. At the same time, the data volumes of such experiments are rapidly increasing. The demand to process billions of neutrino events with many machine learning algorithm inferences creates a computing challenge. We explore a computing model in which heterogeneous computing with GPU coprocessors is made available as a web service. The coprocessors can be efficiently and elastically deployed to provide the right amount of computing for a given processing task. With our approach, Services formore »Optimized Network Inference on Coprocessors (SONIC), we integrate GPU acceleration specifically for the ProtoDUNE-SP reconstruction chain without disrupting the native computing workflow. With our integrated framework, we accelerate the most time-consuming task, track and particle shower hit identification, by a factor of 17. This results in a factor of 2.7 reduction in the total processing time when compared with CPU-only production. For this particular task, only 1 GPU is required for every 68 CPU threads, providing a cost-effective solution.« less
    Free, publicly-accessible full text available January 14, 2022