skip to main content

Search for: All records

Creators/Authors contains: "Tresguerres, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. Free, publicly-accessible full text available March 1, 2023
  3. White seabass ( Atractoscion nobilis) increasingly experience periods of low oxygen (O 2 ; hypoxia) and high carbon dioxide (CO 2 , hypercapnia) due to climate change and eutrophication of the coastal waters of California. Hemoglobin (Hb) is the principal O 2 carrier in the blood and in many teleost fishes Hb-O 2 binding is compromised at low pH; however, the red blood cells (RBC) of some species regulate intracellular pH with adrenergically stimulated sodium-proton-exchangers (β-NHEs). We hypothesized that RBC β-NHEs in white seabass are an important mechanism that can protect the blood O 2 -carrying capacity during hypoxia and hypercapnia. We determined the O 2 -binding characteristics of white seabass blood, the cellular and subcellular response of RBCs to adrenergic stimulation, and quantified the protective effect of β-NHE activity on Hb-O 2 saturation. White seabass had typical teleost Hb characteristics, with a moderate O 2 affinity (Po 2 at half-saturation; P 50 2.9 kPa) that was highly pH-sensitive (Bohr coefficient −0.92; Root effect 52%). Novel findings from super-resolution microscopy revealed β-NHE protein in vesicle-like structures and its translocation into the membrane after adrenergic stimulation. Microscopy data were corroborated by molecular and phylogenetic results and a functional characterization of β-NHEmore »activity. The activation of RBC β-NHEs increased Hb-O 2 saturation by ∼8% in normoxic hypercapnia and by up to ∼20% in hypoxic normocapnia. Our results provide novel insight into the cellular mechanism of adrenergic RBC stimulation within an ecologically relevant context. β-NHE activity in white seabass has great potential to protect arterial O 2 transport during hypoxia and hypercapnia but is less effective during combinations of these stressors.« less
  4. Free, publicly-accessible full text available June 6, 2023
  5. ABSTRACT Fish in coastal ecosystems can be exposed to acute variations in CO2 of between 0.2 and 1 kPa CO2 (2000–10,000 µatm). Coping with this environmental challenge will depend on the ability to rapidly compensate for the internal acid–base disturbance caused by sudden exposure to high environmental CO2 (blood and tissue acidosis); however, studies about the speed of acid–base regulatory responses in marine fish are scarce. We observed that upon sudden exposure to ∼1 kPa CO2, European sea bass (Dicentrarchus labrax) completely regulate erythrocyte intracellular pH within ∼40 min, thus restoring haemoglobin–O2 affinity to pre-exposure levels. Moreover, blood pH returned to normal levels within ∼2 h, which is one of the fastest acid–base recoveries documented in any fish. This was achieved via a large upregulation of net acid excretion and accumulation of HCO3− in blood, which increased from ∼4 to ∼22 mmol l−1. While the abundance and intracellular localisation of gill Na+/K+-ATPase (NKA) and Na+/H+ exchanger 3 (NHE3) remained unchanged, the apical surface area of acid-excreting gill ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid excretion during sudden blood acidosis. Rapid acid–base regulation was completely prevented when the same high CO2 exposure occurred in seawater with experimentally reduced HCO3− and pH, probably because reducedmore »environmental pH inhibited gill H+ excretion via NHE3. The rapid and robust acid–base regulatory responses identified will enable European sea bass to maintain physiological performance during large and sudden CO2 fluctuations that naturally occur in coastal environments.« less
  6. Abstract

    Coral reefs are naturally exposed to daily and seasonal variations in environmental oxygen levels, which can be exacerbated in intensity and duration by anthropogenic activities. However, coral’s diel oxygen dynamics and fermentative pathways remain poorly understood. Here, continuous oxygen microelectrode recordings in the coral diffusive boundary layer revealed hyperoxia during daytime and hypoxia at nighttime resulting from net photosynthesis and net respiration, respectively. The activities of the metabolic enzymes citrate synthase (CS), malate dehydrogenase, and strombine dehydrogenase remained constant throughout the day/night cycle, suggesting that energy metabolism was regulated through adjustments in metabolite fluxes and not through changes in enzyme abundance. Liquid chromatography-mass spectrometry analyses identified strombine as coral’s main fermentative end product. Strombine levels peaked as oxygen became depleted at dusk, indicating increased fermentation rates at the onset of nightly hypoxia, and again at dawn as photosynthesis restored oxygen and photosynthate supply. When these peaks were excluded from the analyses, average strombine levels during the day were nearly double those at night, indicating sifnificant fermentation rates even during aerobic conditions. These results highlight the dynamic changes in oxygen levels in the coral diffusive boundary layer, and the importance of fermentative metabolism for coral biology.

  7. The inner ear is essential for maintaining balance and hearing predator and prey in the environment. Each inner ear contains three CaCO3 otolith polycrystals, which are calcified within an alkaline, K+-rich endolymph secreted by the surrounding epithelium. However, the underlying cellular mechanisms are poorly understood, especially in marine fish. Here, we investigated the presence and cellular localization of several ion-transporting proteins within the saccular epithelium of the Pacific Chub Mackerel (Scomber japonicus). Western blotting revealed the presence of Na+/K+-ATPase (NKA), carbonic anhydrase (CA), Na+-K+-2Cl--co-transporter (NKCC), vacuolar-type H+-ATPase (VHA), plasma membrane Ca2+ ATPase (PMCA), and soluble adenylyl cyclase (sAC). Immunohistochemistry analysis identified two distinct ionocytes types in the saccular epithelium: Type-I ionocytes were mitochondrion-rich and abundantly expressed NKA and NKCC in their basolateral membrane, indicating a role in secreting K+ into the endolymph. On the other hand, Type-II ionocytes were enriched in cytoplasmic CA and VHA, suggesting they help transport HCO3- into the endolymph and remove H+. In addition, both types of ionocytes expressed cytoplasmic PMCA, which is likely involved in Ca2+ transport and homeostasis, as well as sAC, an evolutionary conserved acid-base sensing enzyme that regulates epithelial ion transport. Furthermore, CA, VHA, and sAC were also expressed within the capillariesmore »that supply blood to the meshwork area, suggesting additional mechanisms that contribute to otolith calcification. This information improves our knowledge about the cellular mechanisms responsible for endolymph ion regulation and otolith formation, and can help understand responses to environmental stressors such as ocean acidification.« less