skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tripathy, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Augmented Reality (AR) devices offer novel capabilities that can be exploited in AR systems to positively impact human-machine interactions in a variety of future-work and education contexts. This paper presents a systems model for a no-code AR systems framework that can be used to create AR applications that present just-in-time informatics to assist and guide users in the completion of complex task sequences while ensuring operator and environment safety. The salient structural and behavioral aspects of the system, and key use cases are modeled using the Systems Modeling Language (SysML). Representative examples of the model are presented using use case, block definition, internal block, activity, and state-machine diagrams. These models offer new insights into how AR capabilities can be integrated with a variety of engineered systems. In the future such SysML models can steer the design of new tools and an ontology to strengthen connections to domain knowledge. 
    more » « less
  2. Abstract We report on structural, microstructural, spectroscopic, dielectric, electrical, ferroelectric, ferromagnetic, and magnetodielectric coupling studies of BiFeO3–GdMnO3[(BFO)1–x–(GMO)x], wherexis the concentration of GdMnO3(x= 0.0, 0.025, 0.05, 0.075, 0.1, 0.15, and 0.2), nanocrystalline ceramic solid solutions by auto-combustion method. The analysis of structural property by Rietveld refinement shows the existence of morphotropic phase boundary (MPB) atx= 0.10, which is in agreement with the Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) studies. The average crystallite size obtained from the transmission electron microscopy (TEM) and x-ray line profile analysis was found to be 20–30 nm. The scanning electron micrographs show the uniform distribution of grains throughout the surface of the sample. The dielectric dispersion behavior fits very well with the Maxwell-Wagner model. The frequency dependent phase angle (θ) study shows the resistive nature of solid solutions at low frequency, whereas it shows capacitive behavior at higher frequencies. The temperature variation of dielectric permittivity shows dielectric anomaly at the magnetic phase transition temperature and shifting of the phase transition towards the lower temperature with increasing GMO concentration. The Nyquist plot showed the conduction mechanism is mostly dominated by grains and grain boundary resistances. The ac conductivity of all the samples follows the modified Jonscher model. The impedance and modulus spectroscopy show a non-Debye type relaxation mechanism which can be modeled using a constant phase element (CPE) in the equivalent circuit. The solid-solutions of BFO-GMO show enhanced ferromagnetic-like behavior at room temperature. The ferroelectric polarization measurement shows lossy ferroelectric behavior. The frequency dependent magnetocapacitance and magnetoimpedance clearly show the existence of intrinsic magnetodielectric coupling. The (BFO)1–x–(GMO)xsolid solutions withx= 0.025–0.075 show significantly higher magnetocapacitance and magnetoimpedance compared to the pure BFO. 
    more » « less
  3. Free, publicly-accessible full text available August 29, 2025
  4. Free, publicly-accessible full text available September 1, 2025
  5. The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high p T ) hadron trigger in proton-proton and central Pb-Pb collisions at s NN = 5.02 TeV . A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter R = 0.2 , 0.4, and 0.5 in the range 7 < p T , jet < 140 GeV / c and trigger-recoil jet azimuthal separation π / 2 < Δ φ < π . The measurements exhibit a marked medium-induced jet yield enhancement at low p T and at large azimuthal deviation from Δ φ π . The enhancement is characterized by its dependence on Δ φ , which has a slope that differs from zero by 4.7 σ . Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  6. The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high p T ) charged hadron, in p p and central Pb-Pb collisions at center-of-mass energy per nucleon–nucleon collision s NN = 5.02 TeV. The large uncorrelated background in central Pb-Pb collisions is corrected using a data-driven statistical approach which enables precise measurement of recoil jet distributions over a broad range in p T , ch jet and jet resolution parameter R . Recoil jet yields are reported for R = 0.2 , 0.4, and 0.5 in the range 7 < p T , ch jet < 140   GeV / c and π / 2 < Δ φ < π , where Δ φ is the azimuthal angular separation between hadron trigger and recoil jet. The low- p T , ch jet reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark–gluon plasma generated in high-energy nuclear collisions. Comparison of p T , ch jet distributions from p p and central Pb-Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching. ©2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  7. Free, publicly-accessible full text available June 1, 2025
  8. Measurements of the p T -dependent flow vector fluctuations in Pb–Pb collisions at s NN = 5.02 TeV using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, ] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the p T -dependent flow vector fluctuations at s NN = 5.02 TeV with two-particle correlations. Significant p T -dependent fluctuations of the V 2 flow vector in Pb–Pb collisions are found across different centrality ranges, with the largest fluctuations of up to 15 % being present in the 5% most central collisions. In parallel, no evidence of significant p T -dependent fluctuations of V 3 or V 4 is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5 σ significance in central collisions. These observations in Pb–Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high p T , which might be biased by p T -dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark–gluon plasma properties, and the dynamic evolution of the created system. ©2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
    Free, publicly-accessible full text available June 1, 2025