skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tucker, M A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present optical photometric and spectroscopic observations of the peculiar Type Ia supernovae (SNe Ia) ASASSN-20jq/SN 2020qxp. It is a low-luminosity object, with a peak absolute magnitude ofMB = −17.1 ± 0.5 mag, while its post-peak light-curve decline rate of Δm15(B) = 1.35 ± 0.09 mag and color-stretch parameter ofsBV ⪆ 0.82 is similar to that of normal luminosity SNe Ia. That makes it a prevalent outlier in both the SN Ia luminosity-width and the luminosity-color-stretch relations. The analysis of the early light curves indicates a possible “bump” during the first ≈1.4 days of explosion. ASASSN-20jq synthesized a low radioactive56Ni mass of 0.09 ± 0.01 M. The near-maximum light spectra of the supernova show strong Si IIabsorption lines, indicating a cooler photosphere than normal SNe Ia; however, it lacks Ti IIabsorption lines. Additionally, it shows unusually strong absorption features of O Iλ7773 and the Ca IInear-infrared triplet. The nebular spectra of ASASSN-20jq show a remarkably strong but narrow forbidden [Ca II]λλ7291, 7324 doublet emission that has not been seen in SNe Ia except for a handful of Type Iax events. There is also a marginal detection of the [O I]λλ6300, 6364 doublet emission in nebular spectra, which is extremely rare. Both the [Ca II] and [O I] lines are redshifted by roughly 2000 km s−1. ASASSN-20jq also exhibits a strong [Fe II]λ7155 emission line with a tilted-top line profile, which is identical to the [Fe II]λ16433 line profile. The asymmetric [Fe II] line profiles, along with the redshifted [Ca II] and emission lines, suggest a high central density white dwarf progenitor that underwent an off-center delayed-detonation explosion mechanism, synthesizing roughly equal amounts of56Ni during the deflagration and detonation burning phases. The equal production of56Ni in both burning phases distinguishes ASASSN-20jq from normal bright and subluminous SNe Ia. Assuming this scenario, we simultaneously modeled the optical and near-infrared nebular spectra, achieving a good agreement with the observations. The light curve and spectroscopic features of ASASSN-20jq do not align with any single sub-class of SNe Ia. However, the significant deviation from the luminosity versus light-curve shape relations (along with several light-curve and spectroscopic features) exhibits similarities to some 2002es-like objects. Therefore, we have identified ASASSN-20jq as an extreme candidate within the broad and heterogeneous parameter space of 2002es-like SNe Ia. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. We discuss ASASSN-24fw, a 13th-magnitude star that optically faded by Δ g = 4.12 ± 0.02 mag starting in September 2024 after over a decade of quiescence in ASAS-SN. The dimmimg lasted $$8 months before returning to quiescence in late May 2025. The spectral energy distribution (SED) before the event is that of a pre-main sequence or a modestly evolved F star with some warm dust emission. The shape of the optical SED during the dim phase is unchanged and the optical and near-infrared spectra are those of an F star. The SED and the dilution of some of the F star infrared absorption features near minimum suggest the presence of a $$ 0.25 M_$$ M dwarf binary companion. The 43.8 year period proposed by Nair & Denisenko (2024) appears correct and is probably half the precession period of a circumbinary disk. The optical eclipse is nearly achromatic, although slightly deeper in bluer filters, Δ ( g z ) = 0.31 ± 0.15 mag, and the V band emission is polarized by up to 4%. The materials most able to produce such small optical color changes and a high polarization are big ($$20 μ m) carbonaceous or water ice grains. Particle distributions dominated by big grains are seen in protoplanetary disks, Saturn-like ring systems and evolved debris disks. We also carry out a survey of occultation events, finding 46 additional systems, of which only 7 (4) closely match ε Aurigae (KH 15D), the two archetypes of stars with long and deep eclipses. The full sample is widely distributed in an optical color-magnitude diagram, but roughly half show a mid-IR excess. It is likely many of the others have cooler dust since it seems essential to produce the events. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract We present 307 type Ia supernova (SN) light curves from the first 4 yr of the Transiting Exoplanet Survey Satellite mission. We use this sample to characterize the shapes of the early-time light curves, measure the rise times from first light to peak, and search for companion star interactions. Using simulations, we show that light curves must have noise <10% of the peak flux to avoid biases in the early-time light-curve shape, restricting our quantitative analysis to 74 light curves. We find that the mean power-law index t β 1 of the early-time light curves isβ1= 1.93 ± 0.57, and the mean rise time to peak is 15.7 ± 3.5 days. The underlying population distribution forβ1may instead consist of a Gaussian component with mean 2.29, width 0.34, and a long tail extending to values less than 1.0. We find that the data can rarely distinguish between models with and without companion interaction models. Nevertheless, we find three high-quality light curves that tentatively prefer the addition of a companion interaction model, but the statistical evidence for the companion interactions is not robust. We also find two SNe that disfavor the addition of a companion interaction model to a curved power-law model. Taking the 74 SNe together, we calculate 3σupper limits on the presence of companion signatures to control for orientation effects that can hide companions in individual light curves. Our results rule out common progenitor systems with companions having Roche lobe radii >31R(separations >5.7 × 1012cm, 99.9% confidence level) and disfavor companions having Roche lobe radii >10R(separations >1.9 × 1012cm, 95% confidence level). Lastly, we discuss the implications of our results for the intrinsic fraction of single degenerate progenitor systems. 
    more » « less
  4. Abstract We present a JWST MIRI medium-resolution spectrometer spectrum (5–27μm) of the Type Ia supernova (SN Ia) SN 2021aefx at +415 days pastB-band maximum. The spectrum, which was obtained during the iron-dominated nebular phase, has been analyzed in combination with previous JWST observations of SN 2021aefx to provide the first JWST time series analysis of an SN Ia. We find that the temporal evolution of the [Coiii] 11.888μm feature directly traces the decay of56Co. The spectra, line profiles, and their evolution are analyzed with off-center delayed-detonation models. Best fits were obtained with white dwarf (WD) central densities ofρc= 0.9−1.1 × 109g cm−3, a WD mass ofMWD= 1.33–1.35M, a WD magnetic field of ≈106G, and an off-center deflagration-to-detonation transition at ≈0.5Mseen opposite to the line of sight of the observer (−30°). The inner electron capture core is dominated by energy deposition fromγ-rays, whereas a broader region is dominated by positron deposition, placing SN 2021aefx at +415 days in the transitional phase of the evolution to the positron-dominated regime. The formerly “flat-tilted” profile at 9μm now has a significant contribution from [Niiv], [Feii], and [Feiii] and less from [Ariii], which alters the shape of the feature as positrons mostly excite the low-velocity Ar. Overall, the strength of the stable Ni features in the spectrum is dominated by positron transport rather than the Ni mass. Based on multidimensional models, our analysis is consistent with a single-spot, close-to-central ignition with an indication of a preexisting turbulent velocity field and excludes a multiple-spot, off-center ignition. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. ABSTRACT We report the All-Sky Automated Survey for SuperNovae discovery of the tidal disruption event (TDE) ASASSN-23bd (AT 2023clx) in NGC 3799, a LINER galaxy with no evidence of strong active galactic nucleus (AGN) activity over the past decade. With a redshift of z = 0.01107 and a peak ultraviolet (UV)/optical luminosity of (5.4 ± 0.4) × 1042 erg s−1, ASASSN-23bd is the lowest-redshift and least-luminous TDE discovered to date. Spectroscopically, ASASSN-23bd shows H α and He i emission throughout its spectral time series, there are no coronal lines in its near-infrared spectrum, and the UV spectrum shows nitrogen lines without the strong carbon and magnesium lines typically seen for AGN. Fits to the rising ASAS-SN light curve show that ASASSN-23bd started to brighten on MJD 59988$$^{+1}_{-1}$$, ∼9 d before discovery, with a nearly linear rise in flux, peaking in the g band on MJD $$60 \, 000^{+3}_{-3}$$. Scaling relations and TDE light curve modelling find a black hole mass of ∼106 M⊙, which is on the lower end of supermassive black hole masses. ASASSN-23bd is a dim X-ray source, with an upper limit of $$L_{0.3-10\, \mathrm{keV}} \lt 1.0\times 10^{40}$$ erg s−1 from stacking all Swift observations prior to MJD 60061, but with soft (∼0.1 keV) thermal emission with a luminosity of $$L_{0.3-2 \, \mathrm{keV}}\sim 4\times 10^{39}$$ erg s−1 in XMM-Newton observations on MJD 60095. The rapid (t < 15 d) light curve rise, low UV/optical luminosity, and a luminosity decline over 40 d of ΔL40 ≈ −0.7 dex make ASASSN-23bd one of the dimmest TDEs to date and a member of the growing ‘Low Luminosity and Fast’ class of TDEs. 
    more » « less
  6. Abstract We present three new spectra of the nearby Type Ia supernova (SN Ia) 2011fe covering ≈480–850 days after maximum light and show that the ejecta undergoes a rapid ionization shift at ∼500 days after explosion. The prominent Feiiiemission lines at ≈4600 Å are replaced with Fei+Feiiblends at ∼4400 Å and ∼5400 Å. The ≈7300 Å feature, which is produced by [Feii]+[Niii] at ≲400 days after explosion, is replaced by broad (≈±15,000 km s−1) symmetric [Caii] emission. Models predict this ionization transition occurring ∼100 days later than what is observed, which we attribute to clumping in the ejecta. Finally, we use the nebular-phase spectra to test several proposed progenitor scenarios for SN 2011fe. Nondetections of H and He exclude nearby nondegenerate companions, [Oi] nondetections disfavor the violent merger of two white dwarfs, and the symmetric emission-line profiles favor a symmetric explosion. 
    more » « less
  7. null (Ed.)
  8. ABSTRACT We present Multi-Unit Spectroscopic Explorer (MUSE) integral-field spectroscopy of ESO 253−G003, which hosts a known active galactic nucleus (AGN) and the periodic nuclear transient ASASSN-14ko, observed as part of the All-weather MUse Supernova Integral-field of Nearby Galaxies survey. The MUSE observations reveal that the inner region hosts two AGN separated by $$1.4\pm 0.1~\rm {kpc}$$ (≈1$${_{.}^{\prime\prime}}$$7). The brighter nucleus has asymmetric broad permitted emission-line profiles and is associated with the archival AGN designation. The fainter nucleus does not have a broad emission-line component but exhibits other AGN characteristics, including $$\hbox{$$v_{\rm {FWHM}}$$} \approx 700~\hbox{km~s$$^{-1}$$}$$ forbidden line emission, $$\rm{\log _{10}(\rm{[O\,\small {III}]}/\rm{H\beta})} \approx 1.1$$, and high-excitation potential emission lines, such as [Fe vii] λ6086 and He ii λ4686. The host galaxy exhibits a disturbed morphology with large kpc-scale tidal features, potential outflows from both nuclei, and a likely superbubble. A circular relativistic disc model cannot reproduce the asymmetric broad emission-line profiles in the brighter nucleus, but two non-axisymmetric disc models provide good fits to the broad emission-line profiles: an elliptical disc model and a circular disc + spiral arm model. Implications for the periodic nuclear transient ASASSN-14ko are discussed. 
    more » « less
  9. ABSTRACT One observational prediction for Type Ia supernovae (SNe Ia) explosions produced through white dwarf–white dwarf collisions is the presence of bimodal velocity distributions for the 56Ni decay products, although this signature can also be produced by an off-centre ignition in a delayed detonation explosion. These bimodal velocity distributions can manifest as double-peaked or flat-topped spectral features in late-time spectroscopic observations for favourable viewing angles. We present nebular-phase spectroscopic observations of 17 SNe Ia obtained with the Large Binocular Telescope. Combining these observations with an extensive search of publicly available archival data, we collect a total sample of 48 SNe Ia and classify them based on whether they show compelling evidence for bimodal velocity profiles in three features associated with 56Ni decay products: the [Fe ii] and [Fe iii] feature at ∼5300 Å, the [Co iii] λ5891 feature, and the [Co iii] and [Fe ii] feature at ∼6600 Å. We identify nine bimodal SNe in our sample, and we find that these SNe have average peak MV about 0.3 mag fainter than those that do not. This is consistent with theoretical predictions for explosions created by nearly head-on collisions of white dwarfs due to viewing angle effects and 56Ni yields. 
    more » « less
  10. ABSTRACT We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intranight rises during the early light curve. Early B − V colours show SN 2021fxy is the first ‘shallow-silicon’ (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blueshifted mid-UV spectral features and strong high-velocity Ca ii features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity. 
    more » « less