Abstract We present the discovery of an exceptional dimming event in a cool supergiant star in the Local Volume spiral M51. The star, dubbed M51-DS1, was found as part of a Hubble Space Telescope (HST) search for failed supernovae (SNe). The supergiant, which is plausibly associated with a very young (≲6 Myr) stellar population, showed clear variability (amplitude ΔF814W≈ 0.7 mag) in numerous HST images obtained between 1995 and 2016, before suddenly dimming by >2 mag inF814Wsometime between late 2017 and mid-2019. In follow-up data from 2021, the star rebrightened, ruling out a failed supernova. Prior to its near-disappearance, the star was luminous and red (MF814W≲ − 7.6 mag,F606W−F814W= 1.9–2.2 mag). Modeling of the pre-dimming spectral energy distribution of the star favors a highly reddened, very luminous ( –5.7) star withTeff≈ 3700–4700 K, indicative of a cool yellow or post-red supergiant (RSG) with an initial mass of ≈26–40M⊙. However, the local interstellar extinction and circumstellar extinction are uncertain, and could be lower: the near-IR colors are consistent with an RSG, which would be cooler (Teff≲ 3700 K) and slightly less luminous ( –5.3), giving an inferred initial mass of ≈19–22M⊙. In either case, the dimming may be explained by a rare episode of enhanced mass loss that temporarily obscures the star, potentially a more extreme counterpart to the 2019–2020 “Great Dimming” of Betelgeuse. Given the emerging evidence that massive evolved stars commonly exhibit variability that can mimic a disappearing star, our work highlights a substantial challenge in identifying true failed SNe. 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            ASASSN-24fw: An 8-month long, 4.1 mag, optically achromatic and polarized dimming event
                        
                    
    
            We discuss ASASSN-24fw, a 13th-magnitude star that optically faded by mag starting in September 2024 after over a decade of quiescence in ASAS-SN. The dimmimg lasted $$8 months before returning to quiescence in late May 2025. The spectral energy distribution (SED) before the event is that of a pre-main sequence or a modestly evolved F star with some warm dust emission. The shape of the optical SED during the dim phase is unchanged and the optical and near-infrared spectra are those of an F star. The SED and the dilution of some of the F star infrared absorption features near minimum suggest the presence of a $$ M_$$ M dwarf binary companion. The 43.8 year period proposed by Nair & Denisenko (2024) appears correct and is probably half the precession period of a circumbinary disk. The optical eclipse is nearly achromatic, although slightly deeper in bluer filters, mag, and the band emission is polarized by up to 4%. The materials most able to produce such small optical color changes and a high polarization are big ($$20 m) carbonaceous or water ice grains. Particle distributions dominated by big grains are seen in protoplanetary disks, Saturn-like ring systems and evolved debris disks. We also carry out a survey of occultation events, finding 46 additional systems, of which only 7 (4) closely match Aurigae (KH 15D), the two archetypes of stars with long and deep eclipses. The full sample is widely distributed in an optical color-magnitude diagram, but roughly half show a mid-IR excess. It is likely many of the others have cooler dust since it seems essential to produce the events. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2307385
- PAR ID:
- 10628126
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Open Journal of Astrophysics
- Date Published:
- Journal Name:
- The Open Journal of Astrophysics
- Volume:
- 8
- ISSN:
- 2565-6120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present spectroscopic confirmation of an ultra-massive galaxy (UMG) with at in the Extended Groth Strip (EGS), based on deep observations of Ly emission with Keck/DEIMOS. The ultra-massive galaxy (UMG-28740) is the most massive member in one of the most significant overdensities in the EGS, with four additional photometric members with within cMpc. Spectral energy distribution (SED) fitting using a large suite of star formation histories and two sets of high-quality photometry from ground- and space-based facilities consistently estimates the mass of this object to be with a small standard deviation between measurements ( ). While the best-fit SED models agree on stellar mass, we find discrepancies in the estimated star formation rate for UMG-28740, resulting in either a star-forming or quiescent system. /NIRCam photometry of UMG-28740 strongly favors a quiescent scenario, demonstrating the need for high-quality mid-IR observations. Assuming the galaxy to be quiescent, UMG-28740 formed the bulk of its stars at and is quenching at , resulting in a high star formation efficiency at high redshift ( at and at ). As the most massive galaxy in its protocluster environment, UMG-28740 is a unique example of the impossibly early galaxy problem.more » « less
- 
            In this Letter, we perform fits to decays, where and the pseudoscalar , under the assumption of flavor SU(3) symmetry [ ]. Although the fits to or decays individually are good, the combined fit is very poor: there is a disagreement with the limit of the standard model ( ). One can remove this discrepancy by adding -breaking effects, but 1000% breaking is required. The above results are rigorous, group theoretically—no dynamical assumptions have been made. When one adds an assumption motivated by QCD factorization, the discrepancy with the grows to . Published by the American Physical Society2024more » « less
- 
            Abstract We analyze pre-explosion near- and mid-infrared (IR) imaging of the site of SN 2023ixf in the nearby spiral galaxy M101 and characterize the candidate progenitor star. The star displays compelling evidence of variability with a possible period of ≈1000 days and an amplitude of Δm≈ 0.6 mag in extensive monitoring with the Spitzer Space Telescope since 2004, likely indicative of radial pulsations. Variability consistent with this period is also seen in the near-IRJandKsbands between 2010 and 2023, up to just 10 days before the explosion. Beyond the periodic variability, we do not find evidence for any IR-bright pre-supernova outbursts in this time period. The IR brightness ( mag) and color (J−Ks= 1.6 mag) of the star suggest a luminous and dusty red supergiant. Modeling of the phase-averaged spectral energy distribution (SED) yields constraints on the stellar temperature ( K) and luminosity ( ). This places the candidate among the most luminous Type II supernova progenitors with direct imaging constraints, with the caveat that many of these rely only on optical measurements. Comparison with stellar evolution models gives an initial mass ofMinit= 17 ± 4M⊙. We estimate the pre-supernova mass-loss rate of the star between 3 and 19 yr before explosion from the SED modeling at to 3 × 10−4M⊙yr−1for an assumed wind velocity ofvw= 10 km s−1, perhaps pointing to enhanced mass loss in a pulsation-driven wind.more » « less
- 
            Recently, decays ( , ) were analyzed under the assumption of flavor SU(3) symmetry ( ). Although the individual fits to or decays are good, it was found that the combined fit is very poor: there is a disagreement with the limit of the standard model ( ). One can remove this discrepancy by adding -breaking effects, but 1000% breaking is required. In this paper, we extend this analysis to include decays in which there is an and/or meson in the final state. We now find that the combined fit exhibits a discrepancy with the , and 1000% -breaking effects are still required to explain the data. These results are rigorous, group-theoretically—no theoretical assumptions have been made. But when one adds some theoretical input motivated by QCD factorization, the discrepancy with the grows to .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
