skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Udell, Madeleine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 30, 2024
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. Social science approaches to missing values predict avoided, unrequested, or lost information from dense data sets, typically surveys. The authors propose a matrix factorization approach to missing data imputation that (1) identifies underlying factors to model similarities across respondents and responses and (2) regularizes across factors to reduce their overinfluence for optimal data reconstruction. This approach may enable social scientists to draw new conclusions from sparse data sets with a large number of features, for example, historical or archival sources, online surveys with high attrition rates, or data sets created from Web scraping, which confound traditional imputation techniques. The authors introduce matrix factorization techniques and detail their probabilistic interpretation, and they demonstrate these techniques’ consistency with Rubin’s multiple imputation framework. The authors show via simulations using artificial data and data from real-world subsets of the General Social Survey and National Longitudinal Study of Youth cases for which matrix factorization techniques may be preferred. These findings recommend the use of matrix factorization for data reconstruction in several settings, particularly when data are Boolean and categorical and when large proportions of the data are missing.

    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Assessing the fairness of a decision making system with respect to a protected class, such as gender or race, is challenging when class membership labels are unavailable. Probabilistic models for predicting the protected class based on observable proxies, such as surname and geolocation for race, are sometimes used to impute these missing labels for compliance assessments. Empirically, these methods are observed to exaggerate disparities, but the reason why is unknown. In this paper, we decompose the biases in estimating outcome disparity via threshold-based imputation into multiple interpretable bias sources, allowing us to explain when over- or underestimation occurs. We also propose an alternative weighted estimator that uses soft classification, and show that its bias arises simply from the conditional covariance of the outcome with the true class membership. Finally, we illustrate our results with numerical simulations and a public dataset of mortgage applications, using geolocation as a proxy for race. We confirm that the bias of threshold-based imputation is generally upward, but its magnitude varies strongly with the threshold chosen. Our new weighted estimator tends to have a negative bias that is much simpler to analyze and reason about. 
    more » « less