skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Urbankowski, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since the demonstration of the unique properties of single-layer graphene and transition metal dichalcogenides (TMDs), research on two-dimensional (2D) materials has become one of the hottest topics, with the family of 2D materials quickly expanding. This expansion is mainly attributable to the development of new synthesis methods to create new materials. This review will summarize and critically analyze topochemical synthesis methods for synthesizing novel 2D materials. For example, the emerging family of 2D transition metal carbides, nitrides and carbonitrides (MXenes) are synthesized primarily by selective etching of “A” (metal) elements from MAX phases. Another 2D material, hydrogenated germanene is produced by selective etching of calcium digermanide (CaGe 2 ). The topochemical transformation of one dichalcogenide into another and 2D oxides into 2D carbides or nitrides have attracted great attention because materials with many useful and diverse properties can be obtained by these methods. Topochemical synthesis methods provide alternative ways of synthesizing 2D materials not requiring van der Waals bonded solid precursors or vapor phase deposition, but they have not been comprehensively reviewed. In this review, we describe common principles of topochemical synthesis of 2D materials, explain synthesis mechanisms and offer an outlook for future research. 
    more » « less
  2. Restacking of two-dimensional (2D) flakes reduces the accessibility of electrolyte ions and is a problem in energy storage and other applications. Organic molecules can be used to prevent restacking and keep the interlayer space open. Here, we report on a combined theoretical and experimental investigation of the interaction between 2D titanium carbide (MXene), Ti 3 C 2 T x , and glycine. From first principle calculations, we presented the functionalization of glycine on the Ti 3 C 2 O 2 surface, evidenced by the shared electrons between Ti and N atoms. To experimentally validate our predictions, we synthesized flexible freestanding films of Ti 3 C 2 T x /glycine hybrids. X-ray diffraction and X-ray photoelectron spectroscopy confirmed the increased interlayer spacing and possible Ti–N bonding, respectively, which agree with our theoretical predictions. The Ti 3 C 2 T x /glycine hybrid films exhibited an improved rate and cycling performances compared to pristine Ti 3 C 2 T x , possibly due to better charge percolation within expanded Ti 3 C 2 T x . 
    more » « less
  3. MXenes are a rapidly growing class of 2D transition metal carbides and nitrides, finding applications in fields ranging from energy storage to electromagnetic interference shielding and transparent conductive coatings. However, while more than 20 carbide MXenes have already been synthesized, Ti 4 N 3 and Ti 2 N are the only nitride MXenes reported so far. Here by ammoniation of Mo 2 CT x and V 2 CT x MXenes at 600 °C, we report on their transformation to 2D metal nitrides. Carbon atoms in the precursor MXenes are replaced with N atoms, resulting from the decomposition of ammonia molecules. The crystal structures of the resulting Mo 2 N and V 2 N were determined with transmission electron microscopy and X-ray pair distribution function analysis. Our results indicate that Mo 2 N retains the MXene structure and V 2 C transforms to a mixed layered structure of trigonal V 2 N and cubic VN. Temperature-dependent resistivity measurements of the nitrides reveal that they exhibit metallic conductivity, as opposed to semiconductor-like behavior of their parent carbides. As important, room-temperature electrical conductivity values of Mo 2 N and V 2 N are three and one order of magnitude larger than those of the Mo 2 CT x and V 2 CT x precursors, respectively. This study shows how gas treatment synthesis such as ammoniation can transform carbide MXenes into 2D nitrides with higher electrical conductivities and metallic behavior, opening a new avenue in 2D materials synthesis. 
    more » « less
  4. Abstract

    The cycle life of rechargeable lithium (Li)‐metal batteries is mainly restrained by dendrites growth on the Li‐metal anode and fast depletion of the electrolyte. Here, we report on a stable Li‐metal anode enabled by interconnected two‐dimensional (2D) arrays of niobium nitride (NbN) nanocrystals as the Li host, which exhibits a high Coulombic efficiency (>99 %) after 500 cycles. Combining theoretical and experimental analysis, it is inferred that this performance is due to the intrinsic properties of interconnected 2D arrays of NbN nanocrystals, such as thermodynamic stability against Li‐metal, high Li affinity, fast Li+migration, and Li+transport through the porous 2D nanosheets. Coupled with a lithium nickel–manganese–cobalt oxide cathode, full Li‐metal batteries were built, which showed high cycling stability under practical conditions – high areal cathode loading ≥4 mAh cm−2, low negative/positive (N/P) capacity ratio of 3, and lean electrolyte weight to cathode capacity ratio of 3 g Ah−1. Our results indicate that transition metal nitrides with a rationally designed structure may alleviate the challenges of developing dendrite‐free Li‐metal anodes.

     
    more » « less
  5. Abstract

    The synthesis of low‐dimensional transition metal nitride (TMN) nanomaterials is developing rapidly, as their fundamental properties, such as high electrical conductivity, lead to many important applications. However, TMN nanostructures synthesized by traditional strategies do not allow for maximum conductivity and accessibility of active sites simultaneously, which is a crucial factor for many applications in plasmonics, energy storage, sensing, and so on. Unique interconnected two‐dimensional (2D) arrays of few‐nanometer TMN nanocrystals not only having electronic conductivity in‐plane, but also allowing transport of ions and electrolyte through the porous nanosheets, which are obtained by topochemical synthesis on the surface of a salt template, are reported. As a demonstration of their application in a lithium–sulfur battery, it is shown that 2D arrays of several nitrides can achieve a high initial capacity of >1000 mAh g−1at 0.2 C and only about 13% degradation over 1000 cycles at 1 C under a high areal sulfur loading (>5 mg cm−2).

     
    more » « less
  6. Abstract

    Ultrathin and 2D magnetic materials have attracted a great deal of attention recently due to their potential applications in spintronics. Only a handful of stable ultrathin magnetic materials have been reported, but their high‐yield synthesis remains a challenge. Transition metal (e.g., manganese) nitrides are attractive candidates for spintronics due to their predicted high magnetic transition temperatures. Here, a lattice matching synthesis of ultrathin Mn3N2is employed. Taking advantage of the lattice match between a KCl salt template and Mn3N2, this method yields the first ultrathin magnetic metal nitride via a solution‐based route. Mn3N2flakes show intrinsic magnetic behavior even at 300 K, enabling potential room‐temperature applications. This synthesis procedure offers an approach to the discovery of other ultrathin or 2D metal nitrides.

     
    more » « less
  7. MXenes, a new class of 2D transition metal carbides and carbonitrides, show great promise in supercapacitors, Li‐ion batteries, fuel cells, and sensor applications. A unique combination of their metallic conductivity, hydrophilic surface, and excellent mechanical properties renders them attractive for transparent conductive electrode application. Here, a simple, scalable method is proposed to fabricate transparent conductive thin films using delaminated Ti3C2MXene flakes by spray coating. Homogenous films, 5–70 nm thick, are produced at ambient conditions over a large area as shown by scanning electron microscopy and atomic force microscopy. The sheet resistances (Rs) range from 0.5 to 8 kΩ sq−1at 40% to 90% transmittance, respectively, which corresponds to figures of merit (the ratio of electronic to optical conductivities,σDC/σopt) around 0.5–0.7. Flexible, transparent, and conductive films are also produced and exhibit stableRsvalues at up to 5 mm bend radii. Furthermore, the films' optoelectronic properties are tuned by chemical or electrochemical intercalation of cations. The films show reversible changes of transmittance in the UV–visible region during electrochemical intercalation/deintercalation of tetramethylammonium hydroxide. This work shows the potential of MXenes to be used as transparent conductors in electronic, electrochromic, and sensor applications.

     
    more » « less