skip to main content

Search for: All records

Creators/Authors contains: "Vanthuyne, Nicolas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 27, 2023
  2. Free, publicly-accessible full text available March 22, 2023
  3. Enantiopure helicene-porphyrin conjugates were prepared. They show strong changes in their circular dichroic response as compared to classical helicene derivatives, with highly intense bisignate Exciton Coupling (EC) signal and Δ ε values up to 680 M −1 cm −1 for the Soret band. They also display circularly polarized fluorescence in the (far-)red region, with dissymmetry factors up to 7 × 10 −4 .
  4. While the development of chiral molecules displaying circularly polarized luminescence (CPL) has received considerable attention, the corresponding CPL intensity, g lum, hardly exceeds 10 −2 at the molecular level owing to the difficulty in optimizing the key parameters governing such a luminescence process. To address this challenge, we report here the synthesis and chiroptical properties of a new family of π-helical push–pull systems based on carbo[6]helicene, where the latter acts as either a chiral electron acceptor or a donor unit. This comprehensive experimental and theoretical investigation shows that the magnitude and relative orientation of the electric ( μe ) and magnetic (μ m ) dipole transition moments can be tuned efficiently with regard to the molecular chiroptical properties, which results in high g lum values, i.e. up to 3–4 × 10 −2 . Our investigations revealed that the optimized mutual orientation of the electric and magnetic dipoles in the excited state is a crucial parameter to achieve intense helicene-mediated exciton coupling, which is a major contributor to the obtained strong CPL. Finally, top-emission CP-OLEDs were fabricated through vapor deposition, which afforded a promising g El of around 8 × 10 −3 . These results bring about further molecular design guidelinesmore »to reach high CPL intensity and offer new insights into the development of innovative CP-OLED architectures.« less
  5. π-Helical push–pull dyes were prepared and their (chir)optical properties were investigated both experimentally and computationally. Specific fluorescent behaviour of bis-substituted system was observed with unprecedented solvent effect on the intensity of circularly polarized luminescence (CPL, dissymmetry factor decreasing from 10 −2 to 10 −3 with an increase in solvent polarity) that was linked to a change in symmetry of chiral excited state and suppression of interbranched exciton coupling. The results highlight the potential of CPL spectroscopy to study and provide a deeper understanding of electronic photophysical processes in chiral π-conjugated molecules.