skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Varatharaj, Ashvini"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Assessment in the context of foreign language learning can be difficult and time-consuming for instructors. Distinctive from other domains, language learning often requires teachers to assess each student’s ability to speak the language, making this process even more time-consuming in large classrooms which are particularly common in post-secondary settings; considering that language instructors often assess students through assignments requiring recorded audio, a lack of tools to support such teachers makes providing individual feedback even more challenging. In this work, we seek to explore the development of tools to automatically assess audio responses within a college-level Chinese language-learning course. We build a model designed to grade student audio assignments with the purpose of incorporating such a model into tools focused on helping both teachers and students in real classrooms. Building upon our prior work which explored features extracted from audio, the goal of this work is to explore additional features derived from tone and speech recognition models to help assess students on two outcomes commonly observed in language learning classes: fluency and accuracy of speech. In addition to the exploration of features, this work explores the application of Siamese deep learning models for this assessment task. We find that models utilizing tonal features exhibit higher predictive performance of student fluency while text-based features derived from speech recognition models exhibit higher predictive performance of student accuracy of speech. 
    more » « less
  2. The use of computer-based systems in classrooms has provided teachers with new opportunities in delivering content to students, supplementing instruction, and assessing student knowledge and comprehension. Among the largest benefits of these systems is their ability to provide students with feedback on their work and also report student performance and progress to their teacher. While computer-based systems can automatically assess student answers to a range of question types, a limitation faced by many systems is in regard to open-ended problems. Many systems are either unable to provide support for open-ended problems, relying on the teacher to grade them manually, or avoid such question types entirely. Due to recent advancements in natural language processing methods, the automation of essay grading has made notable strides. However, much of this research has pertained to domains outside of mathematics, where the use of open-ended problems can be used by teachers to assess students' understanding of mathematical concepts beyond what is possible on other types of problems. This research explores the viability and challenges of developing automated graders of open-ended student responses in mathematics. We further explore how the scale of available data impacts model performance. Focusing on content delivered through the ASSISTments online learning platform, we present a set of analyses pertaining to the development and evaluation of models to predict teacher-assigned grades for student open responses. 
    more » « less
  3. A prominent issue faced by the education research community is that of student attrition. While large research efforts have been devoted to studying course-level attrition, widely referred to as dropout, less research has been focused on finer-grained assignment level attrition commonly observed in K-12 classrooms. This later instantiation of attrition, referred to in this paper as “stopout,” is characterized by students failing to complete their assigned work, but the cause of such behavior are not often known. This becomes a large problem for educators and developers of learning platforms as students who give up on assignments early are missing opportunities to learn and practice the material which may affect future performance on related topics; similarly, it is difficult for researchers to develop, and subsequently difficult for computer-based systems to deploy interventions aimed at promoting productive persistence once a student has ceased interaction with the software. This difficulty highlights the importance to understand and identify early signs of stopout behavior in order to provide aid to students preemptively to promote productive persistence in their learning. While many cases of student stopout may be attributable to gaps in student knowledge and indicative of struggle, student attributes such as grit and persistence may be further affected by other factors. This work focuses on identifying different forms of stopout behavior in the context of middle school math by observing student behaviors at the sub-problem level. We find that students exhibit disproportionate stopout on the first problem of their assignments in comparison to stopout on subsequent problems, identifying a behavior that we call “refusal,” and use the emerging patterns of student activity to better understand the potential causes underlying stopout behavior early in an assignment. 
    more » « less
  4. The increased usage of computer-based learning platforms and online tools in classrooms presents new opportunities to not only study the underlying constructs involved in the learning process, but also use this information to identify and aid struggling students. Many learning platforms, particularly those driving or supplementing instruction, are only able to provide aid to students who interact with the system. With this in mind, student persistence emerges as a prominent learning construct contributing to students success when learning new material. Conversely, high persistence is not always productive for students, where additional practice does not help the student move toward a state of mastery of the material. In this paper, we apply a transfer learning methodology using deep learning and traditional modeling techniques to study high and low representations of unproductive persistence. We focus on two prominent problems in the fields of educational data mining and learner analytics representing low persistence, characterized as student "stopout," and unproductive high persistence, operationalized through student "wheel spinning," in an effort to better understand the relationship between these measures of unproductive persistence (i.e. stopout and wheel spinning) and develop early detectors of these behaviors. We find that models developed to detect each within and across-assignment stopout and wheel spinning are able to learn sets of features that generalize to predict the other. We further observe how these models perform at each learning opportunity within student assignments to identify when interventions may be deployed to best aid students who are likely to exhibit unproductive persistence. 
    more » « less