skip to main content


Search for: All records

Creators/Authors contains: "Varma, Sushil Mahavir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivated by applications from gig economy and online marketplaces, we study a two-sided queueing system under joint pricing and matching controls. The queueing system is modeled by a bipartite graph, where the vertices represent customer or server types and the edges represent compatible customer-server pairs. We propose a threshold-based two-price policy and queue length-based maximum-weight matching policy and show that it achieves a near-optimal profit. We study the system under the large-scale regime, wherein the arrival rates are scaled up, and under the large-market regime, wherein both the arrival rates and numbers of customer and server types increase. We show that two-price policy is a primary driver for optimality in the large-scale regime. We demonstrate the advantage of maximum-weight matching with respect to the number of customer and server types. Concurrently, we show that the interplay of pricing and matching is crucial for optimality in the large-market regime. 
    more » « less
  2. Abstract Motivated by applications to wireless networks, cloud computing, data centers, etc., stochastic processing networks have been studied in the literature under various asymptotic regimes. In the heavy traffic regime, the steady-state mean queue length is proved to be $\Theta({1}/{\epsilon})$ , where $\epsilon$ is the heavy traffic parameter (which goes to zero in the limit). The focus of this paper is on obtaining queue length bounds on pre-limit systems, thus establishing the rate of convergence to heavy traffic. For the generalized switch, operating under the MaxWeight algorithm, we show that the mean queue length is within $\textrm{O}({\log}({1}/{\epsilon}))$ of its heavy traffic limit. This result holds regardless of the complete resource pooling (CRP) condition being satisfied. Furthermore, when the CRP condition is satisfied, we show that the mean queue length under the MaxWeight algorithm is within $\textrm{O}({\log}({1}/{\epsilon}))$ of the optimal scheduling policy. Finally, we obtain similar results for the rate of convergence to heavy traffic of the total queue length in load balancing systems operating under the ‘join the shortest queue’ routeing algorithm. 
    more » « less