Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Airborne radar sensors capture the profile of snow layers present on top of an ice sheet. Accurate tracking of these layers is essential to calculate their thicknesses, which are required to investigate the contribution of polar ice cap melt to sea-level rise. However, automatically processing the radar echograms to detect the underlying snow layers is a challenging problem. In our work, we develop wavelet-based multi-scale deep learning architectures for these radar echograms to improve snow layer detection. These architectures estimate the layer depths with a mean absolute error of 3.31 pixels and 94.3% average precision, achieving higher generalizability as compared to state-of-the-art snow layer detection networks. These depth estimates also agree well with physically drilled stake measurements. Such robust architectures can be used on echograms from future missions to efficiently trace snow layers, estimate their individual thicknesses, and thus support sea-level rise projection models.more » « less
-
null (Ed.)The Arctic sea ice has retreated rapidly in the past few decades, which is believed to be driven by various dynamic and thermodynamic processes in the atmosphere. The newly open water resulted from sea ice decline in turn exerts large influence on the atmosphere. Therefore, this study aims to investigate the causality between multiple atmospheric processes and sea ice variations using three distinct data-driven causality approaches that have been proposed recently: Temporal Causality Discovery Framework Non-combinatorial Optimization via Trace Exponential and Augmented lagrangian for Structure learning (NOTEARS) and Directed Acyclic Graph-Graph Neural Networks (DAG-GNN). We apply these three algorithms to 39 years of historical time-series data sets, which include 11 atmospheric variables from ERA-5 reanalysis product and passive microwave satellite retrieved sea ice extent. By comparing the causality graph results of these approaches with what we summarized from the literature, it shows that the static graphs produced by NOTEARS and DAG-GNN are relatively reasonable. The results from NOTEARS indicate that relative humidity and precipitation dominate sea ice changes among all variables, while the results from DAG-GNN suggest that the horizontal and meridional wind are more important for driving sea ice variations. However, both approaches produce some unrealistic cause-effect relationships. Additionally, these three methods cannot well detect the delayed impact of one variable on another in the Arctic. It also turns out that the results are rather sensitive to the choice of hyperparameters of the three methods. As a pioneer study, this work paves the way to disentangle the complex causal relationships in the Earth system, by taking the advantage of cutting-edge Artificial Intelligence technologies.more » « less
-
null (Ed.)Climate change is extensively affecting ice sheets resulting in accelerating mass loss in recent decades. Assessment of this reduction and its causes is required to project future ice mass loss. Annual snow accumulation is an important component of the surface mass balance of ice sheets. While in situ snow accumulation measurements are temporally and spatially limited due to their high cost, airborne radar sounders can achieve ice sheet wide coverage by capturing and tracking annual snow layers in the radar images or echograms. In this paper, we use deep learning to uniquely identify the position of each annual snow layer in the Snow Radar echograms taken across different regions over the Greenland ice sheet. We train with more than 15,000 images generated from radar echograms and estimate the thickness of each snow layer within a mean absolute error of 0.54 to 7.28 pixels, depending on dataset. A highly precise snow layer thickness can help improve weather models and, thus, support glaciological studies. Such a well-trained deep learning model can be used with ever-growing datasets to aid in the accurate assessment of snow accumulation on the dynamically changing ice sheets.more » « less
An official website of the United States government
