Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Talks at practitioner-focused open-source software conferences are a valuable source of information for software engineering researchers. They provide a pulse of the community and are valuable source material for grey literature analysis. We curated a dataset of 24,669 talks from 87 open-source conferences between 2010 and 2021. We stored all relevant metadata from these conferences and provide scripts to collect the transcripts. We believe this data is useful for answering many kinds of questions, such as: What are the important/highly discussed topics within practitioner communities? How do practitioners interact? And how do they present themselves to the public? We demonstrate the usefulness of this data by reporting our findings from two small studies: a topic model analysis providing an overview of open-source community dynamics since 2011 and a qualitative analysis of a smaller community-oriented sample within our dataset to gain a better understanding of why contributors leave open-source software.
-
Twitter is widely used by software developers. But how effective are tweets at promoting open source projects? How could one use Twitter to increase a project’s popularity or attract new contributors? In this paper we report on a mixed-methods empirical study of 44,544 tweets containing links to 2,370 open-source GitHub repositories, looking for evidence of causal effects of these tweets on the projects attracting new GitHub stars and contributors, as well as characterizing the high-impact tweets, the people likely being attracted by them, and how they differ from contributors attracted otherwise. Among others, we find that tweets have a statistically significant and practically sizable effect on obtaining new stars and a small average effect on attracting new contributors. The popularity, content of the tweet, as well as the identity of tweet authors all affect the scale of the attraction effect. In addition, our qualitative analysis suggests that forming an active Twitter community for an open source project plays an important role in attracting new committers via tweets. We also report that developers who are new to GitHub or have a long history of Twitter usage but few tweets posted are most likely to be attracted as contributors to the repositoriesmore »
-
A great part of software development involves conceptualizing or communicating the underlying procedures and logic that needs to be expressed in programs. One major difficulty of programming is turning concept into code , especially when dealing with the APIs of unfamiliar libraries. Recently, there has been a proliferation of machine learning methods for code generation and retrieval from natural language queries , but these have primarily been evaluated purely based on retrieval accuracy or overlap of generated code with developer-written code, and the actual effect of these methods on the developer workflow is surprisingly unattested. In this article, we perform the first comprehensive investigation of the promise and challenges of using such technology inside the PyCharm IDE, asking, “At the current state of technology does it improve developer productivity or accuracy, how does it affect the developer experience, and what are the remaining gaps and challenges?” To facilitate the study, we first develop a plugin for the PyCharm IDE that implements a hybrid of code generation and code retrieval functionality, and we orchestrate virtual environments to enable collection of many user events (e.g., web browsing, keystrokes, fine-grained code edits). We ask developers with various backgrounds to complete 7 varieties ofmore »
-
Online toxicity is ubiquitous across the internet and its negative impact on the people and that online communities that it effects has been well documented. However, toxicity manifests differently on various platforms and toxicity in open source communities, while frequently discussed, is not well understood. We take a first stride at understanding the characteristics of open source toxicity to better inform future work on designing effective intervention and detection methods. To this end, we curate a sample of 100 toxic GitHub issue discussions combining multiple search and sampling strategies. We then qualitatively analyze the sample to gain an understanding of the characteristics of open-source toxicity. We find that the pervasive forms of toxicity in open source differ from those observed on other platforms like Reddit or Wikipedia. In our sample, some of the most prevalent forms of toxicity are entitled, demanding, and arrogant comments from project users as well as insults arising from technical disagreements. In addition, not all toxicity was written by people external to the projects; project members were also common authors of toxicity. We also discuss the implications of our findings. Among others we hope that our findings will be useful for future detection work.
-
Variable names are critical for conveying intended program behavior. Machine learning-based program analysis methods use variable name representations for a wide range of tasks, such as suggesting new variable names and bug detection. Ideally, such methods could capture semantic relationships between names beyond syntactic similarity, e.g., the fact that the names average and mean are similar. Unfortunately, previous work has found that even the best of previous representation approaches primarily capture "relatedness" (whether two variables are linked at all), rather than "similarity" (whether they actually have the same meaning). We propose VarCLR, a new approach for learning semantic representations of variable names that effectively captures variable similarity in this stricter sense. We observe that this problem is an excellent fit for contrastive learning, which aims to minimize the distance between explicitly similar inputs, while maximizing the distance between dissimilar inputs. This requires labeled training data, and thus we construct a novel, weakly-supervised variable renaming dataset mined from GitHub edits. We show that VarCLR enables the effective application of sophisticated, general-purpose language models like BERT, to variable name representation and thus also to related downstream tasks like variable name similarity search or spelling correction. VarCLR produces models that significantly outperform themore »
-
A common tool used by security professionals for reverse engineering binaries found in the wild is the decompiler. A decompiler attempts to reverse compilation, transforming a binary to a higher-level language such as C. High-level languages ease reasoning about programs by providing useful abstractions such as loops, typed variables, and comments, but these abstractions are lost during compilation. Decompilers are able to deterministically reconstruct structural properties of code, but comments, variable names, and custom variable types are technically impossible to recover. In this paper we present DIRTY (DecompIled variable ReTYper), a novel technique for improving the quality of decompiler output that automatically generates meaningful variable names and types. DIRTY is built on a Transformer based neural network model and is trained on code automatically scraped from repositories on GitHub. DIRTY uses this model to postprocesses decompiled files, recommending variable types and names given their context. Empirical evaluation on a novel dataset of C code mined from GitHub shows that DIRTY outperforms prior work approaches by a sizable margin, recovering the original names written by developers 66.4% of the time and the original types 75.8% of the time.
-
The decompiler is one of the most common tools for examining executable binaries without the corresponding source code. It transforms binaries into high-level code, reversing the compilation process. Unfortunately, decompiler output is far from readable because the decompilation process is often incomplete. State-of-the-art techniques use machine learning to predict missing information like variable names. While these approaches are often able to suggest good variable names in context, no existing work examines how the selection of training data influences these machine learning models. We investigate how data provenance and the quality of training data affect performance, and how well, if at all, trained models generalize across software domains. We focus on the variable renaming problem using one such machine learning model, DIRE . We first describe DIRE in detail and the accompanying technique used to generate training data from raw code. We also evaluate DIRE ’s overall performance without respect to data quality. Next, we show how training on more popular, possibly higher quality code (measured using GitHub stars) leads to a more generalizable model because popular code tends to have more diverse variable names. Finally, we evaluate how well DIRE predicts domain-specific identifiers, propose a modification to incorporate domain information,more »
-
The notion of forking has changed with the rise of distributed ver- sion control systems and social coding environments, like GitHub. Traditionally forking refers to splitting off an independent devel- opment branch (which we call hard forks); research on hard forks, conducted mostly in pre-GitHub days showed that hard forks were often seen critical as they may fragment a community. Today, in so- cial coding environments, open-source developers are encouraged to fork a project in order to contribute to the community (which we call social forks), which may have also influenced perceptions and practices around hard forks. To revisit hard forks, we identify, study, and classify 15,306 hard forks on GitHub and interview 18 owners of hard forks or forked repositories. We find that, among others, hard forks often evolve out of social forks rather than being planned deliberately and that perception about hard forks have indeed changed dramatically, seeing them often as a positive non- competitive alternative to the original project.