Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 13, 2026
-
Free, publicly-accessible full text available October 28, 2025
-
The analytical chemistry of phosphorus-containing materials is often impeded by the long measurement times and relatively large sample masses needed for 31 P NMR spectroscopy, by the scarcity and access limitations of synchrotron beamlines operating in the energy range of the P K-edge, by the challenges posed by species interconversion during liquid extraction, and by the considerable air-sensitivity typical of many phosphorus-containing materials and nanophases. To this end, we report the design and operation of a new laboratory-based spectrometer to simultaneously perform P Kα and Kβ X-ray emission spectroscopy (XES) while being housed in a research-grade controlled-atmosphere glovebox. Demonstration studies on nickel phosphide nanophases illustrate the importance of air-free XES and the value of simultaneous Kα and Kβ spectroscopy for identifying the P oxidation state and for investigating nanoscale influences on valence level electronic structures.more » « less
-
Abstract Black phosphorus (bP) is a two‐dimensional van der Waals material unique in its potential to serve as a support for single‐site catalysts due to its similarity to molecular phosphines, ligands quintessential in homogeneous catalysis. However, there is a scarcity of synthetic methods to install single metal centers on the bP lattice. Here, we demonstrate the functionalization of bP nanosheets with molecular Re and Mo complexes. A suite of characterization techniques, including infrared, X‐ray photoelectron and X‐ray absorption spectroscopy as well as scanning transmission electron microscopy corroborate that the functionalized nanosheets contain a high density of discrete metal centers directly bound to the bP surface. Moreover, the supported metal centers are chemically accessible and can undergo ligand exchange transformations without detaching from the surface. The steric and electronic properties of bP as a ligand are estimated with respect to molecular phosphines. Sterically, bP resembles tri(tolyl)phosphine when monodentate to a metal center, and bis(diphenylphosphino)propane when bidentate, whereas electronically bP is a σ‐donor as strong as a trialkyl phosphine. This work is foundational in elucidating the nature of black phosphorus as a ligand and underscores the viability of using bP as a basis for single‐site catalysts.more » « less