skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vines, S_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We combine wavelet analysis and data fusion to investigate geomagnetically induced currents (GICs) on the Mäntsälä pipeline and the associated horizontal geomagnetic field, BH, variations during the late main phase of the 17 March 2013 geomagnetic storm. The wavelet analysis decomposes the GIC and BH signals at increasing “scales” to show distinct multi‐minute spectral features around the GIC spikes. Four GIC spikes >10 A occurred while the pipeline was in the dusk sector—the first sine‐wave‐like spike at ∼16 UT was “compound.” It was followed by three “self‐similar” spikes 2 hr later. The contemporaneous multi‐resolution observations from ground‐(magnetometer, SuperMAG, SuperDARN), and space‐based (AMPERE, Two Wide‐Angle Imaging Neutral‐atom Spectrometers) platforms capture multi‐scale activity to reveal two magnetospheric modes causing the spikes. The GIC at ∼16 UT occurred in two parts with the negative spike associated with a transient sub‐auroral eastward electrojet that closed a developing partial ring current loop, whereas the positive spike developed with the arrival of the associated mesoscale flow‐channel in the auroral zone. The three spikes between 18 and 19 UT were due to bursty bulk flows (BBFs). We attribute all spikes to flow‐channel injections (substorms) of varying scales. We use previously published MHD simulations of the event to substantiate our conclusions, given the dearth of timely in‐situ satellite observations. Our results show that multi‐scale magnetosphere‐ionosphere activity that drives GICs can be understood using multi‐resolution analysis. This new framework of combining wavelet analysis with multi‐platform observations opens a research avenue for GIC investigations and other space weather impacts. 
    more » « less
  2. Abstract High‐latitude ionospheric convection is a useful diagnostic of solar wind‐magnetosphere interactions and nightside activity in the magnetotail. For decades, the high‐latitude convection pattern has been mapped using the Super Dual Auroral Radar Network (SuperDARN), a distribution of ground‐based radars which are capable of measuring line‐of‐sight (l‐o‐s) ionospheric flows. From the l‐o‐s measurements an estimate of the global convection can be obtained. As the SuperDARN coverage is not truly global, it is necessary to constrain the maps when the map fitting is performed. The lower latitude boundary of the convection, known as the Heppner‐Maynard boundary (HMB), provides one such constraint. In the standard SuperDARN fitting, the HMB location is determined directly from the data, but data gaps can make this challenging. In this study we evaluate if the HMB placement can be improved using data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), in particular for active time periods when the HMB moves to latitudes below . We find that the boundary as defined by SuperDARN and AMPERE are not always co‐located. SuperDARN performs better when the AMPERE currents are very weak (e.g., during non‐active times) and AMPERE can provide a boundary when there is no SuperDARN scatter. Using three geomagnetic storm events, we show that there is agreement between the SuperDARN and AMPERE boundaries but the SuperDARN‐derived convection boundary mostly lies equatorward of the AMPERE‐derived boundary. We find that disagreements primarily arise due to geometrical factors and a time lag in expansions and contractions of the patterns. 
    more » « less
  3. Abstract The effects of a solar wind pressure pulse on the terrestrial magnetosphere have been observed in detail across multiple datasets. The communication of these effects into the magnetosphere is known as a positive geomagnetic sudden impulse (+SI), and are observed across latitudes and different phenomena to characterize the propagation of +SI effects through the magnetosphere. A superposition of Alfvén and compressional propagation modes are observed in magnetometer signatures, with the dominance of these signatures varying with latitude. For the first time, collocated lobe reconnection convection vortices and region 0 field aligned currents are observed preceding the +SI onset, and an enhancement of these signatures is observed as a result of +SI effects. Finally, cusp auroral emission is observed collocated with the convection and current signatures. For the first time, simultaneous observations across multiple phenomena are presented to confirm models of +SI propagation presented previously. 
    more » « less