skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vittal, Vijay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Ensuring reliable operation of large power systems subjected to multiple outages is a challenging task because of the combinatorial nature of the problem. Traditional approaches for security assessment are often limited by their scope and/or speed, resulting in missing of critical contingencies that could lead to cascading failures. This paper proposes a two-component methodology to enhance power system security. The first component combines an efficient algorithm to detect cut-set saturation (called the feasibility test (FT) algorithm) with real-time contingency analysis (RTCA) to create an integrated corrective action (iCA), whose goal is to secure the system against cut-set saturation as well as critical branch overloads. The second component employs the only results of the FT to create a relaxed corrective action (rCA) to secure the system against post-contingency cut-set saturation. The first component is more comprehensive, but the latter is computationally more efficient. The effectiveness of the two components is evaluated based upon the number of cascade triggering contingencies alleviated, and the computation time. The results obtained by analyzing different case-studies on the IEEE 118-bus and 2000-bus synthetic Texas systems indicate that the proposed two-component methodology successfully enhances the scope and speed of power system security assessment during multiple outages. 
    more » « less
  2. This paper assesses the stability improvements that can be achieved through the coordinated wide-area control of power system stabilizers (PSSs), static VAr compensators (SVCs), and supplementary damping controllers (SDCs) for damping low frequency oscillations (LFOs) in a power system embedded with multiple high voltage DC (HVDC) lines. The improved damping is achieved by designing a coordinated widearea damping controller (CWADC) that employs partial state feedback. The design methodology uses a linear matrix inequality (LMI)-based mixed H2=H1 robust control for multiple operating scenarios. To reduce the high computational burden, an enhanced version of selective modal analysis (SMA) is employed that not only reduces the number of required wide-area feedback signals, but also identifies alternate feedback signals. Additionally, the impact of delays on the performance of the control design is investigated. The studies are performed on a 29 machine, 127 bus equivalent model of the Western Electricity Coordinating Council (WECC) system-embedded with three HVDC lines and two wind farms. 
    more » « less
  3. During major power system disturbances, when multiple component outages occur in rapid succession, it becomes crucial to quickly identify the transmission interconnections that have limited power transfer capability. Understanding the impact of an outage on these critical interconnections (called saturated cut-sets) is important for enhancing situational awareness and taking correct actions. This paper proposes a new graph theoretic approach for analyzing whether a contingency will create a saturated cut-set in a meshed power network. A novel feature of the proposed algorithm is that it lowers the solution time significantly making the approach viable for real-time operations. It also indicates the minimum amount by which the power transfer through the critical interconnections should be reduced so that post-contingency saturation does not occur. Robustness of the proposed algorithm for enhanced situational awareness is demonstrated using the IEEE-118 bus system as well as a 17,000+ bus model of the Western Interconnection (WI). Comparisons made with different approaches for power system vulnerability assessment prove the utility of the proposed scheme for aiding power system operations during extreme exigencies. 
    more » « less