skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coordinated Wide-Area Control of Multiple Controllers in a Power System Embedded with HVDC Lines
This paper assesses the stability improvements that can be achieved through the coordinated wide-area control of power system stabilizers (PSSs), static VAr compensators (SVCs), and supplementary damping controllers (SDCs) for damping low frequency oscillations (LFOs) in a power system embedded with multiple high voltage DC (HVDC) lines. The improved damping is achieved by designing a coordinated widearea damping controller (CWADC) that employs partial state feedback. The design methodology uses a linear matrix inequality (LMI)-based mixed H2=H1 robust control for multiple operating scenarios. To reduce the high computational burden, an enhanced version of selective modal analysis (SMA) is employed that not only reduces the number of required wide-area feedback signals, but also identifies alternate feedback signals. Additionally, the impact of delays on the performance of the control design is investigated. The studies are performed on a 29 machine, 127 bus equivalent model of the Western Electricity Coordinating Council (WECC) system-embedded with three HVDC lines and two wind farms.  more » « less
Award ID(s):
1934766
PAR ID:
10186565
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Power Systems
ISSN:
0885-8950
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to the rapid development of economies, large urban cities consume an increasing amount of energy and have a higher requirement for power quality. Voltage source converter based high voltage direct current (VSC-HVDC) is a promising device to transmit clean power from remote regions to urban power systems, while also providing wide area damping control (WADC) for frequency stabilization. However, the time-delay naturally existing in the VSC-HVDC system may degrade the performance of WADC and even result in instability. To address this issue, this paper develops a time-delay correction control strategy for VSC-HVDC damping control in urban power grids. First, a small signal model of WADC is built to analyze the negative impacts of time delay. Then, a data-driven approach is proposed to compensate for the inherent time delay in VSC-HVDC damping control. The extensive training data will be generated under various disturbances. After offline training, the long short-term memory network (LSTM) can be implemented online to predict the actual frequency deviation based on real-time measurements. Finally, the proposed method is validated through MATLAB-Simulink in a two-area four-machine system. The results indicate that the data-driven compensation has a strong generalization ability for random delay time constants and can improve the performance of WADC significantly. 
    more » « less
  2. Distributed generation is gaining greater penetration levels in distribution grids due to government incentives for integrating distributed energy resources (DERs) and DER cost reductions. The frequency response of a grid-connected single inverter changes as other inverters are connected in parallel due to the couplings among grid inductance and/or inverter output filters. The selection of the inverter- or grid-side currents as feedback control signals is then not trivial because each one has tradeoffs. This paper analyses the system stability for multiple parallel- and grid-connected inverters using the inverter- or gridside currents as feedback signals. Modeling of both feedback signals is performed using the current separation technique. Moreover, the stability range for different conditions including active damping is analyzed through the root locus technique. The grid-side current has a wider range of stability, but the inverterside current allows for higher values of the proportional gain near the critical frequency and no extra sensors are needed since measurement of the inverter current is needed for protection in high-power applications. 
    more » « less
  3. Ensuring the stability of power systems is gaining more attention today than ever before due to the rapid growth of uncertainties in load and increased renewable energy penetration. Lately, wide-area measurement system (WAMS)-based centralized controlling techniques are offering flexibility and more robust control to keep the system stable. WAMS-based controlling techniques, however, face pressing challenges of irregular delays in long-distance communication channels and subsequent responses of equipment to control actions. This paper presents an innovative control strategy for damping down low-frequency oscillations in transmission systems. The method uses a reinforcement learning technique to overcome the challenges of communication delays and other non-linearity in wide-area damping control. It models the traditional problem of oscillation damping control as a novel faster exploration-based deep deterministic policy gradient (DDPG-S). An effective reward function is designed to capture necessary features of oscillations enabling timely damping of such oscillations, even under various kinds of uncertainties. A detailed analysis and a systematically designed numerical validation are presented to prove feasibility, scalability, interpretability, and comparative performance of the modelled low-frequency oscillation damping controller. The benefit of the technique is that stability is ensured even when uncertainties of load and generation are on the rise. 
    more » « less
  4. Abstract The epoch of reionization (EoR) offers a unique window into the dawn of galaxy formation, through which high-redshift galaxies can be studied by observations of both themselves and their impact on the intergalactic medium. Line intensity mapping (LIM) promises to explore cosmic reionization and its driving sources by measuring intensity fluctuations of emission lines tracing the cosmic gas in varying phases. Using LIMFAST, a novel seminumerical tool designed to self-consistently simulate LIM signals of multiple EoR probes, we investigate how building blocks of galaxy formation and evolution theory, such as feedback-regulated star formation and chemical enrichment, might be studied with multitracer LIM during the EoR. On galaxy scales, we show that the star formation law and the feedback associated with star formation can be indicated by both the shape and redshift evolution of LIM power spectra. For a baseline model of metal production that traces star formation, we find that lines highly sensitive to metallicity are generally better probes of galaxy formation models. On larger scales, we demonstrate that inferring ionized bubble sizes from cross-correlations between tracers of ionized and neutral gas requires a detailed understanding of the astrophysics that shape the line luminosity–halo mass relation. Despite various modeling and observational challenges, wide-area, multitracer LIM surveys will provide important high-redshift tests for the fundamentals of galaxy formation theory, especially the interplay between star formation and feedback by accessing statistically the entire low-mass population of galaxies as ideal laboratories, complementary to upcoming surveys of individual sources by new-generation telescopes. 
    more » « less
  5. Electrical power systems are transitioning from fuel-based generation to renewable generation and transmission interfaced by power electronics. This transition challenges standard power system modeling, analysis, and control paradigms across timescales from milliseconds to seasons. This tutorial focuses on frequency stability on timescales of milliseconds to seconds. We first review basic results for grid-following (GFL) and grid-forming (GFM) control of voltage source converters (VSCs), typical renewable generation, and high voltage direct current (HVdc) transmission. In this context, it becomes apparent that GFL and GFM control functions are needed to operate emerging power systems. However, combining GFL resources, GFM resources, and legacy generation on the same system results in highly complex dynamics that are a significant obstacle to stability analysis. The remainder of the tutorial provides an overview of recent developments in universal GFM controls that bridge the gap between GFL and GFM control and provide a pathway to a coherent control and analysis framework accounting for power generation, power conversion, and power transmission. 
    more » « less