skip to main content


Title: Mitigation of Saturated Cut-sets During Multiple Outages to Enhance Power System Security
Ensuring reliable operation of large power systems subjected to multiple outages is a challenging task because of the combinatorial nature of the problem. Traditional approaches for security assessment are often limited by their scope and/or speed, resulting in missing of critical contingencies that could lead to cascading failures. This paper proposes a two-component methodology to enhance power system security. The first component combines an efficient algorithm to detect cut-set saturation (called the feasibility test (FT) algorithm) with real-time contingency analysis (RTCA) to create an integrated corrective action (iCA), whose goal is to secure the system against cut-set saturation as well as critical branch overloads. The second component employs the only results of the FT to create a relaxed corrective action (rCA) to secure the system against post-contingency cut-set saturation. The first component is more comprehensive, but the latter is computationally more efficient. The effectiveness of the two components is evaluated based upon the number of cascade triggering contingencies alleviated, and the computation time. The results obtained by analyzing different case-studies on the IEEE 118-bus and 2000-bus synthetic Texas systems indicate that the proposed two-component methodology successfully enhances the scope and speed of power system security assessment during multiple outages.  more » « less
Award ID(s):
1934766 2132904
NSF-PAR ID:
10292260
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Power Systems
ISSN:
0885-8950
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During major power system disturbances, when multiple component outages occur in rapid succession, it becomes crucial to quickly identify the transmission interconnections that have limited power transfer capability. Understanding the impact of an outage on these critical interconnections (called saturated cut-sets) is important for enhancing situational awareness and taking correct actions. This paper proposes a new graph theoretic approach for analyzing whether a contingency will create a saturated cut-set in a meshed power network. A novel feature of the proposed algorithm is that it lowers the solution time significantly making the approach viable for real-time operations. It also indicates the minimum amount by which the power transfer through the critical interconnections should be reduced so that post-contingency saturation does not occur. Robustness of the proposed algorithm for enhanced situational awareness is demonstrated using the IEEE-118 bus system as well as a 17,000+ bus model of the Western Interconnection (WI). Comparisons made with different approaches for power system vulnerability assessment prove the utility of the proposed scheme for aiding power system operations during extreme exigencies. 
    more » « less
  2. Water and power systems are increasingly interdependent due to the growing number of electricity-driven water facilities. The security of one system can be affected by a contingency in the other system. This paper investigates a security-constrained operation problem of the energy-water nexus (EWN), which is a computationally challenging optimization problem due to the nonlinearity, nonconvexity, and size. We propose a two-step iterative contingency filtering method based on the feasibility and rating of the contingencies to decrease the size of the problem. The optimal power and water flow are obtained in a normal situation by considering the set of contingencies that can not be controlled with corrective actions. The feasibility check of the contingencies is performed in the second step, followed by a rating of the uncontrollable contingencies. Finally, the critical contingencies are obtained and added to the first step for the next iteration. We also employ convex technologies to reduce the computation burden. The proposed method is validated via two case studies. Results indicate that this approach can efficiently attain optimal values. 
    more » « less
  3. This paper is concerned about improving the resilience of power grids against extreme events which may lead to the line and generator outages and subsequent voltage stability problems and blackouts. The reported study investigates ways of eliminating or substantially reducing the chances of having such voltage stability problems during expected extreme events, by strategically placing a few distributed generators in the system. The problem is addressed in two stages, where a reasonably inclusive list of credible contingencies are individually considered first. A minimum number of distributed generators are selected and placed in order to maintain voltage stability under each considered contingency. In the second stage, the number of generators is minimized by the strategic selection of locations to reach a solution that ensures voltage stability under all considered contingencies in the system. Effectiveness and computational performance of the developed strategy are illustrated by simulating several outage scenarios using the IEEE 118-bus system. 
    more » « less
  4. Voltage instability occurs when a power system is unable to meet reactive power demand at one or more buses. Voltage instability events have caused several major outages and promise to become more frequent due to increasing energy demand. The future smart grid may help to ensure voltage stability by enabling rapid detection of possible voltage instability and implementation of corrective action. These corrective actions will only be effective in restoring stability if they are chosen in a timely, scalable manner. Current techniques for selecting control actions, however, rely on exhaustive search, and hence may choose an inefficient control strategy. In this paper, we propose a submodular optimization approach to designing a control strategy to prevent voltage instability at one or more buses. Our key insight is that the deviation from the desired voltage is a supermodular function of the set of reactive power injections that are employed, leading to computationally efficient control algorithms with provable optimality guarantees. Furthermore, we show that the optimality bound of our approach can be improved from 1/3 to 1/2 when the power system operates under heavy loading conditions. We demonstrate our framework through extensive simulation study on the IEEE 30 bus test case. 
    more » « less
  5. null (Ed.)
    The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages. 
    more » « less