Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
We define an enrichment of the logarithmic derivative of the zeta function of a variety over a finite field to a power series with coefficients in the Grothendieck–Witt group. We show that this enrichment is related to the topology of the real points of a lift. For cellular schemes over a field, we prove a rationality result for this enriched logarithmic derivative of the zeta function as an analogue of part of the Weil conjectures. We also compute several examples, including toric varieties, and show that the enrichment is a motivic measure.more » « less
-
Abstract Let$$\alpha \colon X \to Y$$be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under$$\alpha $$is semistable if the genus ofYis at least$$1$$and stable if the genus ofYis at least$$2$$. We prove this conjecture if the map$$\alpha $$is general in any component of the Hurwitz space of covers of an arbitrary smooth curveY.more » « less
-
Abstract Let $$\alpha \colon X \to Y$$ be a general degree $$r$$ primitive map of nonsingular, irreducible, projective curves over an algebraically closed field of characteristic zero or larger than $$r$$. We prove that the Tschirnhausen bundle of $$\alpha $$ is semistable if $$g(Y) \geq 1$$ and stable if $$g(Y) \geq 2$$.more » « less
An official website of the United States government

Full Text Available