Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The experiments at the Large Hadron Collider (LHC) rely upon a complex distributed computing infrastructure (WLCG) consisting of hundreds of individual sites worldwide at universities and national laboratories, providing about half a billion computing job slots and an exabyte of storage interconnected through high speed networks. Wide Area Networking (WAN) is one of the three pillars (together with computational resources and storage) of LHC computing. More than 5 PB/day are transferred between WLCG sites. Monitoring is one of the crucial components of WAN and experiments operations. In the past years all experiments have invested significant effort to improve monitoring and integratemore »
-
One of the most costly factors in providing a global computing infrastructure such as the WLCG is the human effort in deployment, integration, and operation of the distributed services supporting collaborative computing, data sharing and delivery, and analysis of extreme scale datasets. Furthermore, the time required to roll out global software updates, introduce new service components, or prototype novel systems requiring coordinated deployments across multiple facilities is often increased by communication latencies, staff availability, and in many cases expertise required for operations of bespoke services. While the WLCG (and distributed systems implemented throughout HEP) is a global service platform, itmore »
-
Doglioni, C. ; Kim, D. ; Stewart, G.A. ; Silvestris, L. ; Jackson, P. ; Kamleh, W. (Ed.)WLCG relies on the network as a critical part of its infrastructure and therefore needs to guarantee effective network usage and prompt detection and resolution of any network issues including connection failures, congestion and traffic routing. The OSG Networking Area, in partnership with WLCG, is focused on being the primary source of networking information for its partners and constituents. It was established to ensure sites and experiments can better understand and fix networking issues, while providing an analytics platform that aggregates network monitoring data with higher level workload and data transfer services. This has been facilitated by the global networkmore »
-
Data distribution for opportunistic users is challenging as they neither own the computing resources they are using or any nearby storage. Users are motivated to use opportunistic computing to expand their data processing capacity, but they require storage and fast networking to distribute data to that processing. Since it requires significant management overhead, it is rare for resource providers to allow opportunistic access to storage. Additionally, in order to use opportunistic storage at several distributed sites, users assume the responsibility to maintain their data. In this paper we present StashCache, a distributed caching federation that enables opportunistic users to utilizemore »
-
We describe progress on building the SLATE (Services Layer at the Edge) platform. The high level goal of SLATE is to facilitate creation of multi-institutional science computing systems by augmenting the canonical Science DMZ pattern with a generic, "programmable", secure and trusted underlayment platform. This platform permits hosting of advanced container-centric services needed for higher-level capabilities such as data transfer nodes, software and data caches, workflow services and science gateway components. SLATE uses best-of-breed data center virtualization and containerization components, and where available, software defined networking, to enable distributed automation of deployment and service lifecycle management tasks by domain experts.more »
-
Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiencymore »Free, publicly-accessible full text available January 1, 2023