Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
GiussodelGaldo, Gian Pietro (Ed.)During a survey by the National Tropical Botanical Garden drone team, an enigmatic Schiedea was observed in December 2021on steep, rocky cliff faces of the Waiahulu Valley in the Waimea Canyon of Kaua'i. Subsequently, another survey was conducted in March 2022 and, by use of a remotely controlled cutting device suspended below the drone, the first herbarium specimen was collected, as well as a seed collection of an undescribed cliff-dwelling species of Schiedea. Detailed study of the collections and plants grown at the University of California, Irvine greenhouse showed that it had enlarged, somewhat whitish sepals similar to those of cliff-dwelling S. attenuata (the sole species in sect. Leucocalyx), yet differed significantly from all other species in the genus. It also shares with S. attenuata a woody habit, hermaphroditic flowers, coloured nectar and styles 5 to 7 or 8. We describe it here as S. waiahuluensis given the only known localities are on the cliffs of this valley and place it in an enlarged sect. Leucocalyx. With the discovery of this new species, there are 36 species in this Hawaiian endemic genus.more » « less
-
Abstract PremiseThe preservation of plant tissues in ethanol is conventionally viewed as problematic. Here, we show that leaf preservation in ethanol combined with proteinase digestion can provide high‐quality DNA extracts. Additionally, as a pretreatment, ethanol can facilitate DNA extraction for recalcitrant samples. MethodsDNA was isolated from leaves preserved with 96% ethanol or from silica‐desiccated leaf samples and herbarium fragments that were pretreated with ethanol. DNA was extracted from herbarium tissues using a special ethanol pretreatment protocol, and these extracts were compared with those obtained using the standard cetyltrimethylammonium bromide (CTAB) method. ResultsDNA extracted from tissue preserved in, or pretreated with, ethanol was less fragmented than DNA from tissues without pretreatment. Adding proteinase digestion to the lysis step increased the amount of DNA obtained from the ethanol‐pretreated tissues. The combination of the ethanol pretreatment with liquid nitrogen freezing and a sorbitol wash prior to cell lysis greatly improved the quality and yield of DNA from the herbarium tissue samples. DiscussionThis study critically reevaluates the consequences of ethanol for plant tissue preservation and expands the utility of pretreatment methods for molecular and phylogenomic studies.more » « less
-
Abstract Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking noncoding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic, and morphological diversity in the group. We found that the combination of exons and flanking noncoding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation. [Gypsum endemism; Oenothera sect. Calylophus; Onagraceae; phylogenomics; pollinator shift; recent radiation; target enrichment.]more » « less
An official website of the United States government
