skip to main content

Search for: All records

Creators/Authors contains: "Wahl, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Storm surges are the most important driver of flooding in many coastal areas. Understanding the spatial extent of storm surge events has important financial and practical implications for flood risk management, reinsurance, infrastructure reliability and emergency response. In this paper, we apply a new tracking algorithm to a high-resolution surge hindcast (CODEC, 1980–2017) to characterize the spatial dependence and temporal evolution of extreme surge events along the coastline of the UK and Ireland. We quantify the severity of each spatial event based on its footprint extremity to select and rank the collection of events. Several surge footprint types are obtained based on the most impacted coastal stretch from each particular event, and these are linked to the driving storm tracks. Using the collection of the extreme surge events, we assess the spatial distribution and interannual variability of the duration, size, severity, and type. We find that the northeast coastline is most impacted by the longest and largest storm surge events, while the English Channel experiences the shortest and smallest storm surge events. The interannual variability indicates that the winter seasons of 1989-90 and 2013–14 were the most serious in terms of the number of events and their severity, based on the return period along the affected coastlines. The most extreme surge event and the highest number of events occurred in the winter season 1989–90, while the proportion of events with larger severities was higher during the winter season 2013–14. This new spatial analysis approach of surge extremes allows us to distinguish several categories of spatial footprints of events around the UK/Ireland coast and link these to distinct storm tracks. The spatial dependence structures detected can improve multivariate statistical methods which are crucial inputs to coastal flooding assessments. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Abstract

    The U.S. coastlines have experienced rapid increases in occurrences of High Tide Flooding (HTF) during recent decades. While it is generally accepted that relative mean sea level (RMSL) rise is the dominant cause for this, an attribution to individual components is still lacking. Here, we use local sea-level budgets to attribute past changes in HTF days to RMSL and its individual contributions. We find that while RMSL rise generally explains > 84% of long-term increases in HTF days locally, spatial patterns in HTF changes also depend on differences in flooding thresholds and water level characteristics. Vertical land motion dominates long-term increases in HTF, particularly in the northeast, while sterodynamic sea level (SDSL) is most important elsewhere and on shorter temporal scales. We also show that the recent SDSL acceleration in the Gulf of Mexico has led to an increase of 220% in the frequency of HTF events over the last decade.

    more » « less
  3. Abstract While there is evidence for an acceleration in global mean sea level (MSL) since the 1960s, its detection at local levels has been hampered by the considerable influence of natural variability on the rate of MSL change. Here we report a MSL acceleration in tide gauge records along the U.S. Southeast and Gulf coasts that has led to rates (>10 mm yr −1 since 2010) that are unprecedented in at least 120 years. We show that this acceleration is primarily induced by an ocean dynamic signal exceeding the externally forced response from historical climate model simulations. However, when the simulated forced response is removed from observations, the residuals are neither historically unprecedented nor inconsistent with internal variability in simulations. A large fraction of the residuals is consistent with wind driven Rossby waves in the tropical North Atlantic. This indicates that this ongoing acceleration represents the compounding effects of external forcing and internal climate variability. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Understanding uncertainties in extreme wind-wave events is essential for offshore/coastal risk and adaptation estimates. Despite this, uncertainties in contemporary extreme wave events have not been assessed, and projections are still limited. Here, we quantify, at global scale, the uncertainties in contemporary extreme wave estimates across an ensemble of widely used global wave reanalyses/hindcasts supported by observations. We find that contemporary uncertainties in 50-year return period wave heights (Hs50) reach (on average) ~2.5 m in regions adjacent to coastlines and are primarily driven by atmospheric forcing. Furthermore, we show that uncertainties in contemporaryHs50estimates dominate projected 21st-century changes inHs50across ~80% of global ocean and coastlines. When translated into broad-scale coastal risk analysis, these uncertainties are comparable to those from storm surges and projected sea level rise. Thus, uncertainties in contemporary extreme wave events need to be combined with those of projections to fully assess potential impacts.

    more » « less
  6. Abstract We address the challenge, due to sparse observational records, of investigating long-term changes in the storm surge climate globally. We use two centennial and three satellite-era daily storm surge time series from the Global Storm Surge Reconstructions (GSSR) database and assess trends in the magnitude and frequency of extreme storm surge events at 320 tide gauges across the globe from 1930, 1950, and 1980 to present. Before calculating trends, we perform change point analysis to identify and remove data where inhomogeneities in atmospheric reanalysis products could lead to spurious trends in the storm surge data. Even after removing unreliable data, the database still extends existing storm surge records by several decades for most of the tide gauges. Storm surges derived from the centennial 20CR and ERA-20C atmospheric reanalyses show consistently significant positive trends along the southern North Sea and the Kattegat Bay regions during the periods from 1930 and 1950 onwards and negative trends since 1980 period. When comparing all five storm surge reconstructions and observations for the overlapping 1980–2010 period we find overall good agreement, but distinct differences along some coastlines, such as the Bay of Biscay and Australia. We also assess changes in the frequency of extreme surges and find that the number of annual exceedances above the 95th percentile has increased since 1930 and 1950 in several regions such as Western Europe, Kattegat Bay, and the US East Coast. 
    more » « less
  7. Abstract. To improve our understanding of the influence of tropicalcyclones (TCs) on coastal flooding, the relationships between storm surgeand TC characteristics are analyzed for 12 sites along the east coast of theUnited States. This analysis offers a unique perspective by first examiningthe relationship between the characteristics of TCs and their resultingstorm surge and then determining the probabilities of storm surge associatedwith TCs based on exceeding certain TC characteristic thresholds. Usingobservational data, the statistical dependencies of storm surge on TCs areexamined for these characteristics: TC proximity, intensity, path angle, andpropagation speed, by applying both exponential and linear fits to the data.At each tide gauge along the east coast of the United States, storm surge isinfluenced differently by these TC characteristics, with some locations morestrongly influenced by TC intensity and others by TC proximity. Thecorrelation for individual and combined TC characteristics increases whenconditional sorting is applied to isolate strong TCs close to a location.The probabilities of TCs generating surge exceeding specific return levels(RLs) are then analyzed for TCs passing within 500 km of a tide gauge, wherebetween 6 % and 28 % of TCs were found to cause surge exceeding the1-year RL. If only the closest and strongest TCs are considered, thepercentage of TCs that generate surge exceeding the 1-year RL is between 30 % and 70 % at sites north of Sewell's Point, VA, and over 65 % atalmost all sites south of Charleston, SC. When examining storm surgeproduced by TCs, single-variable regression provides a good fit, whilemulti-variable regression improves the fit, particularly when focusing on TCproximity and intensity, which are, probabilistically, the two mostinfluential TC characteristics on storm surge. 
    more » « less
  8. Abstract Recent advances in machine learning have enabled Neural Network (NN) inference directly on constrained embedded devices. This local approach enhances the privacy of user data, as the inputs to the NN inference are not shared with third-party cloud providers over a communication network. At the same time, however, performing local NN inference on embedded devices opens up the possibility of Power Analysis attacks, which have recently been shown to be effective in recovering NN parameters, as well as their activations and structure. Knowledge of these NN characteristics constitutes a privacy threat, as it enables highly effective Membership Inference and Model Inversion attacks, which can recover information about the sensitive data that the NN model was trained on. In this paper we address the problem of securing sensitive NN inference parameters against Power Analysis attacks. Our approach employs masking , a countermeasure well-studied in the context of cryptographic algorithms. We design a set of gadgets , i.e., masked operations, tailored to NN inference. We prove our proposed gadgets secure against power attacks and show, both formally and experimentally, that they are composable, resulting in secure NN inference. We further propose optimizations that exploit intrinsic characteristics of NN inference to reduce the masking’s runtime and randomness requirements. We empirically evaluate the performance of our constructions, showing them to incur a slowdown by a factor of about 2–5. 
    more » « less