skip to main content

Search for: All records

Creators/Authors contains: "Walker, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract. The chemical complexity of biomass burning organic aerosol (BBOA) greatlyincreases with photochemical aging in the atmosphere, necessitatingcontrolled laboratory studies to inform field observations. In theseexperiments, BBOA from American white oak (Quercus alba) leaf andheartwood samples was generated in a custom-built emissions and combustionchamber and photochemically aged in a potential aerosol mass (PAM) flowreactor. A thermal desorption aerosol gas chromatograph (TAG) was used inparallel with a high-resolution time-of-flight aerosol mass spectrometer(AMS) to analyze BBOA chemical composition at different levels ofphotochemical aging. Individual compounds were identified and integrated toobtain relative decay rates for key molecules. A recently developedchromatogram binning positive matrix factorization (PMF) technique was usedto obtain mass spectral profiles for factors in TAG BBOA chromatograms,improving analysis efficiency and providing a more complete determination ofunresolved complex mixture (UCM) components. Additionally, the recentlycharacterized TAG decomposition window was used to track molecular fragmentscreated by the decomposition of thermally labile BBOA during sampledesorption. We demonstrate that although most primary (freshly emitted) BBOAcompounds deplete with photochemical aging, certain components eluting withinthe TAG thermal decomposition window are instead enhanced. Specifically, theincreasing trend in the decomposition m∕z 44 signal (CO2+)indicates formation of secondary organic aerosol (SOA) in the PAM reactor.Sources of m∕z 60 (C2H4O2+), typically attributed tofreshly emitted BBOAmore »in AMS field measurements, were also investigated. Fromthe TAG chemical speciation and decomposition window data, we observed adecrease in m∕z 60 with photochemical aging due to the decay ofanhydrosugars (including levoglucosan) and other compounds, as well as anincrease in m∕z 60 due to the formation of thermally labile organic acidswithin the PAM reactor, which decompose during TAG sample desorption. Whenaging both types of BBOA (leaf and heartwood), the AMS data exhibit acombination of these two contributing effects, causing limited change to theoverall m∕z 60 signal. Our observations demonstrate the importance ofchemically speciated data in fully understanding bulk aerosol measurementsprovided by the AMS in both laboratory and field studies.« less