skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walsh, Kevin J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Numerical modeling has long suggested that gravitationally bound (or so-called rubble-pile) near-Earth asteroids (NEAs) can be destroyed by tidal forces during close and slow encounters with terrestrial planets. However, tidal disruptions of NEAs have never been directly observed nor have they been directly attributed to any families of NEAs. Here we show population-level evidence for the tidal disruption of NEAs during close encounters with Earth and Venus. Debiased model distributions of NEA orbits and absolute magnitudes based on observations by the Catalina Sky Survey during 2005–2012 underpredict the number of NEAs with perihelion distances coinciding with the semimajor axes of Venus and Earth. A detailed analysis of the orbital distributions of the excess NEAs shows that their characteristics agree with the prediction for tidal disruptions, and they cannot be explained by observational selection effects or orbital dynamics. Accounting for tidal disruptions in evolutionary models of the NEA population partly bridges the gap between the predicted rate of impacts by asteroids with diameters of tens of meters and observed statistics of fireballs in the same size range. 
    more » « less
  2. Abstract We present an approach for the inclusion of nonspherical constituents in high-resolutionN-body discrete element method (DEM) simulations. We use aggregates composed of bonded spheres to model nonspherical components. Though the method may be applied more generally, we detail our implementation in the existingN-body codepkdgrav. It has long been acknowledged that nonspherical grains confer additional shear strength and resistance to flow when compared with spheres. As a result, we expect that rubble-pile asteroids will also exhibit these properties and may behave differently than comparable rubble piles composed of idealized spheres. Since spherical particles avoid some significant technical challenges, most DEM gravity codes have used only spherical particles or have been confined to relatively low resolutions. We also discuss the work that has gone into improving performance with nonspherical grains, building onpkdgrav's existing leading-edge computational efficiency among DEM gravity codes. This allows for the addition of nonspherical shapes while maintaining the efficiencies afforded bypkdgrav's tree implementation and parallelization. As a test, we simulated the gravitational collapse of 25,000 nonspherical bodies in parallel. In this case, the efficiency improvements allowed for an increase in speed by nearly a factor of 3 when compared with the naive implementation. Without these enhancements, large runs with nonspherical components would remain prohibitively expensive. Finally, we present the results of several small-scale tests: spin-up due to the YORP effect, tidal encounters, and the Brazil nut effect. In all cases, we find that the inclusion of nonspherical constituents has a measurable impact on simulation outcomes. 
    more » « less
  3. Abstract Polluted white dwarfs (WDs) offer a unique way to study the bulk compositions of exoplanetary material, but it is not always clear if this material originates from comets, asteroids, moons, or planets. We combineN-body simulations with an analytical model to assess the prevalence of extrasolar moons as WD polluters. Using a sample of observed polluted WDs, we find that the extrapolated parent body masses of the polluters are often more consistent with those of many solar system moons, rather than solar-like asteroids. We provide a framework for estimating the fraction of WDs currently undergoing observable moon accretion based on results from simulated WD planetary and moon systems. Focusing on a three-planet WD system of super-Earth to Neptune-mass bodies, we find that we could expect about one percent of such systems to be currently undergoing moon accretions as opposed to asteroid accretion. 
    more » « less
  4. Abstract Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable. 
    more » « less
  5. Magnetic force microscopy (MFM) is an atomic force microscopy (AFM)-based technique to map magnetic domains in a sample. MFM is widely used to characterize magnetic recording media, magnetic domain walls in materials, nanoparticles and more recently iron deposits in biological samples. However, conventional MFM requires multiple scans of the samples, suffers from various artifacts and is limited in its capability for multimodal imaging or imaging in a fluid environment. We propose a new modality, namely indirect magnetic force microscopy (ID-MFM), a technique that employs an ultrathin barrier between the probe and the sample. Using fluorescently conjugated superparamagnetic nanoparticles, we demonstrate how ID-MFM can be achieved using commercially available silicon nitride windows, MFM probes and AFM equipment. The MFM signals obtained using ID-MFM were comparable to those obtained using conventional MFM. Further, samples prepared for ID-MFM were compatible with multi-modal imaging via fluorescence and transmission electron microscopy. Thus ID-MFM can serve as a high-throughput, multi-modal microscopy technique which can be especially attractive for detecting magnetism in nanoparticles and biological samples. 
    more » « less