Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ML APIs have greatly relieved application developers of the burden to design and train their own neural network models—classifying objects in an image can now be as simple as one line of Python code to call an API. However, these APIs offer the same pre-trained models regardless of how their output is used by different applications. This can be suboptimal as not all ML inference errors can cause application failures, and the distinction between inference errors that can or cannot cause failures varies greatly across applications. To tackle this problem, we first study 77 real-world applications, which collectively use six ML APIs from two providers, to reveal common patterns of how ML API output affects applications' decision processes. Inspired by the findings, we propose ChameleonAPI, an optimization framework for ML APIs, which takes effect without changing the application source code. ChameleonAPI provides application developers with a parser that automatically analyzes the application to produce an abstract of its decision process, which is then used to devise an application-specific loss function that only penalizes API output errors critical to the application. ChameleonAPI uses the loss function to efficiently train a neural network model customized for each application and deploys it to serve API invocations from the respective application via existing interface. Compared to a baseline that selects the best-of-all commercial ML API, we show that ChameleonAPI reduces incorrect application decisions by 43%.more » « lessFree, publicly-accessible full text available July 10, 2025
-
Free, publicly-accessible full text available July 10, 2025
-
Due to the under-specified interfaces, developers face challenges in correctly integrating machine learning (ML) APIs in software. Even when the ML API and the software are well designed on their own, the resulting application misbehaves when the API output is incompatible with the software. It is desirable to have an adapter that converts ML API output at runtime to better fit the software need and prevent integration failures. In this paper, we conduct an empirical study to understand ML API integration problems in real-world applications. Guided by this study, we present SmartGear, a tool that automatically detects and converts mismatching or incorrect ML API output at run time, serving as a middle layer between ML API and software. Our evaluation on a variety of open-source applications shows that SmartGear detects 70% incompatible API outputs and prevents 67% potential integration failures, outperforming alternative solutions.