skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wang, Chong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose an intrinsic mechanism to understand the even-odd effect, namely, opposite signs of anomalous Hall resistance and different shapes of hysteresis loops for even and odd septuple layers (SLs), of MBE-grown MnBi2Te4 thin films with electron doping. The nonzero hysteresis loops in the anomalous Hall effect and magnetic circular dichroism for even-SLs MnBi2Te4 films originate from two different antiferromagnetic (AFM) configurations with different zeroth Landau level energies of surface states. The complex form of the anomalous Hall hysteresis loop can be understood from two magnetic transitions, a transition between two AFM states followed by a second transition to the ferromagnetic state. Our model also clarifies the relationship and distinction between axion parameter and magnetoelectric coefficient, and shows an even-odd oscillation behavior of magnetoelectric coefficients in MnBi2Te4 films. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. Abstract

    In type-II Weyl semimetals (WSMs), the tilting of the Weyl cones leads to the coexistence of electron and hole pockets that touch at the Weyl nodes. These electrons and holes experience the Berry curvature generated by the Weyl nodes, leading to an anomalous Hall effect that is highly sensitive to the Fermi level position. Here we have identified field-induced ferromagnetic MnBi2-xSbxTe4as an ideal type-II WSM with a single pair of Weyl nodes. By employing a combination of quantum oscillations and high-field Hall measurements, we have resolved the evolution of Fermi-surface sections as the Fermi level is tuned across the charge neutrality point, precisely matching the band structure of an ideal type-II WSM. Furthermore, the anomalous Hall conductivity exhibits a heartbeat-like behavior as the Fermi level is tuned across the Weyl nodes, a feature of type-II WSMs that was long predicted by theory. Our work uncovers a large free carrier contribution to the anomalous Hall effect resulting from the unique interplay between the Fermi surface and diverging Berry curvature in magnetic type-II WSMs.

     
    more » « less
  4. Abstract Understanding the relationship between biodiversity and ecosystem stability is a central goal of ecologists. Recent studies have concluded that biodiversity increases community temporal stability by increasing the asynchrony between the dynamics of different species. Theoretically, this enhancement can occur through either increased between-species compensatory dynamics, a fundamentally biological mechanism; or through an averaging effect, primarily a statistical mechanism. Yet it remains unclear which mechanism is dominant in explaining the diversity-stability relationship. We address this issue by mathematically decomposing asynchrony into components separately quantifying the compensatory and statistical-averaging effects. We applied the new decomposition approach to plant survey and experimental data from North American grasslands. We show that statistical averaging, rather than compensatory dynamics, was the principal mediator of biodiversity effects on community stability. Our simple decomposition approach helps integrate concepts of stability, asynchrony, statistical averaging, and compensatory dynamics, and suggests that statistical averaging, rather than compensatory dynamics, is the primary means by which biodiversity confers ecological stability. 
    more » « less
  5. Abstract The interplay between a multitude of electronic, spin, and lattice degrees of freedom underlies the complex phase diagrams of quantum materials. Layer stacking in van der Waals (vdW) heterostructures is responsible for exotic electronic and magnetic properties, which inspires stacking control of two-dimensional magnetism. Beyond the interplay between stacking order and interlayer magnetism, we discover a spin-shear coupling mechanism in which a subtle shear of the atomic layers can have a profound effect on the intralayer magnetic order in a family of vdW antiferromagnets. Using time-resolved X-ray diffraction and optical linear dichroism measurements, interlayer shear is identified as the primary structural degree of freedom that couples with magnetic order. The recovery times of both shear and magnetic order upon optical excitation diverge at the magnetic ordering temperature with the same critical exponent. The time-dependent Ginzburg-Landau theory shows that this concurrent critical slowing down arises from a linear coupling of the interlayer shear to the magnetic order, which is dictated by the broken mirror symmetry intrinsic to the monoclinic stacking. Our results highlight the importance of interlayer shear in ultrafast control of magnetic order via spin-mechanical coupling. 
    more » « less