skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Jinfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the context of food insecurity in resource-poor settings, agroecology (AE) has emerged as an important approach promoted for improving crop productivity, yet few studies have demonstrated how a combination of agroecological methods can improve crop health and thereby crop productivity. Using a geospatial approach, this study investigated whether agroecological practices can improve crop health in smallholder contexts. WE compared leaf area indexes (LAIs) of crops on AEs and non AE-farms and prospectively predicted the impact of AE using vegetation indexes (VIs). We found that crops on AE farms produced higher average growing season LAIs for maize and pigeonpeas (1.28 m2/m2) and maize and beans (1.29 m2/m2) farms compared to 0.97 m2/m2 and 0.80 m2/m2, respectively, for the same crops on the non-AE farms. The higher LAIs suggest that the combination of farming strategies practiced on the AE farms produced healtheir crops on AE farms. Random forest regression prospective predictions generated statistically significant higher LAIs for maize and beans (R2 = 0.90, root mean square error (RMSE] = 0.32 m2/m2) and maize and pigeonpea (R2 = 0.88 m2/m2, RMSE = 0.42 m2/m2) on the AE farms, but predictions for the non-AE farms were not statistically significant. The findings demonstrate that combining AE strategies can potentially improve crop productivity to enhance household food security and income in smallholder contexts. 
    more » « less
  2. Crop yield is related to household food security and community resilience, especially in smallholder agricultural systems. As such, it is crucial to accurately estimate within-season yield in order to provide critical information for farm management and decision making. Therefore, the primary objective of this paper is to assess the most appropriate method, indices, and growth stage for predicting the groundnut yield in smallholder agricultural systems in northern Malawi. We have estimated the yield of groundnut in two smallholder farms using the observed yield and vegetation indices (VIs), which were derived from multitemporal PlanetScope satellite data. Simple linear, multiple linear (MLR), and random forest (RF) regressions were applied for the prediction. The leave-one-out cross-validation method was used to validate the models. The results showed that (i) of the modelling approaches, the RF model using the five most important variables (RF5) was the best approach for predicting the groundnut yield, with a coefficient of determination (R2) of 0.96 and a root mean square error (RMSE) of 0.29 kg/ha, followed by the MLR model (R2 = 0.84, RMSE = 0.84 kg/ha); in addition, (ii) the best within-season stage to accurately predict groundnut yield is during the R5/beginning seed stage. The RF5 model was used to estimate the yield for four different farms. The estimated yields were compared with the total reported yields from the farms. The results revealed that the RF5 model generally accurately estimated the groundnut yields, with the margins of error ranging between 0.85% and 11%. The errors are within the post-harvest loss margins in Malawi. The results indicate that the observed yield and VIs, which were derived from open-source remote sensing data, can be applied to estimate yield in order to facilitate farming and food security planning. 
    more » « less
  3. Deforestation drives climate change and reinforces food insecurity in forest dependent communities. What drives deforestation varies by location and is shaped by livelihood systems. But how locals perceive restoration is crucial for developing restoration policies. Evidence suggests that applying sustainable farming strategies can potentially restore forests and sustain livelihoods. Applying a broad-based conceptualization of deforestation and restoration in policymaking, however, results in missed opportunities for addressing deforestation and restoration. Here, we explore the drivers of deforestation, the perceptions of restoration, and the challenges to restoration among smallholder farmers in northern Malawi and examine how agroecology can contribute to restoring degraded agroecosystems. Participants report agricultural land expansion, charcoal production, climate change, burnt brick production, and government subsidies as the major drivers of deforestation. We observed that although perceptions of forest restoration reflect farmers' traditional ecological knowledge (TEK) to include reclamation of degraded farmlands, reconstruction of native tree species, and replacement of felled trees on farmlands, there are challenges including splitting families to gain access to more subsidized fertilizers and food aid, embedded cultural practices, growing demand for charcoal in cities, and weak ecosystem governance structures that hinder the effectiveness of restoration efforts. We, however, do find that agroecological intensification can increase yield from smaller farmlands and allow for larger and longer-lasting fallows of spare lands which regenerate forests. Key overarching implications of these findings include the need to integrate livelihoods more explicitly into restoration plans, accounting for TEK in restoration policies in forest-dependent communities and encouraging the adoption of agroecology. 
    more » « less
  4. null (Ed.)
    Abstract. Ocean–sea-ice coupled models constrained by various observations provide different ice thickness estimates in the Antarctic. We evaluatecontemporary monthly ice thickness from four reanalyses in the Weddell Sea: the German contribution of the project Estimating the Circulation and Climate ofthe Ocean Version 2 (GECCO2), the Southern Ocean State Estimate (SOSE), the Ensemble Kalman Filter system based on the Nucleus for European Modelling of the Ocean (NEMO-EnKF) and the Global Ice–Ocean Modeling and Assimilation System (GIOMAS). The evaluation is performed againstreference satellite and in situ observations from ICESat-1, Envisat, upward-looking sonars and visual ship-based sea-ice observations. Compared withICESat-1, NEMO-EnKF has the highest correlation coefficient (CC) of 0.54 and lowest root mean square error (RMSE) of 0.44 m. Compared within situ observations, SOSE has the highest CC of 0.77 and lowest RMSE of 0.72 m. All reanalyses underestimate ice thickness near the coast ofthe western Weddell Sea with respect to ICESat-1 and in situ observations even though these observational estimates may be biased low. GECCO2 andNEMO-EnKF reproduce the seasonal variation in first-year ice thickness reasonably well in the eastern Weddell Sea. In contrast, GIOMAS ice thicknessperforms best in the central Weddell Sea, while SOSE ice thickness agrees most with the observations from the southern coast of the Weddell Sea. Inaddition, only NEMO-EnKF can reproduce the seasonal evolution of the large-scale spatial distribution of ice thickness, characterized by the thickice shifting from the southwestern and western Weddell Sea in summer to the western and northwestern Weddell Sea in spring. We infer that the thickice distribution is correlated with its better simulation of northward ice motion in the western Weddell Sea. These results demonstrate thepossibilities and limitations of using current sea-ice reanalysis for understanding the recent variability of sea-ice volume in the Antarctic. 
    more » « less
  5. Mapping crop types and land cover in smallholder farming systems in sub-Saharan Africa remains a challenge due to data costs, high cloud cover, and poor temporal resolution of satellite data. With improvement in satellite technology and image processing techniques, there is a potential for integrating data from sensors with different spectral characteristics and temporal resolutions to effectively map crop types and land cover. In our Malawi study area, it is common that there are no cloud-free images available for the entire crop growth season. The goal of this experiment is to produce detailed crop type and land cover maps in agricultural landscapes using the Sentinel-1 (S-1) radar data, Sentinel-2 (S-2) optical data, S-2 and PlanetScope data fusion, and S-1 C2 matrix and S-1 H/α polarimetric decomposition. We evaluated the ability to combine these data to map crop types and land cover in two smallholder farming locations. The random forest algorithm, trained with crop and land cover type data collected in the field, complemented with samples digitized from Google Earth Pro and DigitalGlobe, was used for the classification experiments. The results show that the S-2 and PlanetScope fused image + S-1 covariance (C2) matrix + H/α polarimetric decomposition (an entropy-based decomposition method) fusion outperformed all other image combinations, producing higher overall accuracies (OAs) (>85%) and Kappa coefficients (>0.80). These OAs represent a 13.53% and 11.7% improvement on the Sentinel-2-only (OAs < 80%) experiment for Thimalala and Edundu, respectively. The experiment also provided accurate insights into the distribution of crop and land cover types in the area. The findings suggest that in cloud-dense and resource-poor locations, fusing high temporal resolution radar data with available optical data presents an opportunity for operational mapping of crop types and land cover to support food security and environmental management decision-making. 
    more » « less
  6. null (Ed.)
    Amid climate change, biodiversity loss and food insecurity, there is the growing need to draw synergies between micro-scale environmental processes and practices, and macro-level ecosystem dynamics to facilitate conservation decision-making. Adopting this synergistic approach can improve crop yields and profitability more sustainably, enhance livelihoods and mitigate climate change. Using spatially explicit data generated through a public participatory geographic information system methodology (n = 37), complemented by spatial analysis, interviews (n = 68) and focus group discussions (n = 4), we explored the synergies between participatory farmer-to-farmer agroecology knowledge sharing, farm-level decisions and their links with macro-level prioritization of conservation strategies. We mapped farm conditions and ecosystem services (ES) of two village areas with varying knowledge systems about farming. Results of the farm-level analysis revealed variations in spatial perception among farmers, differences in understanding the dynamics of crop growth and varying priorities for extension services based on agroecological knowledge. The ES use pattern analysis revealed hotspots in the mapped ES indicators with similarities in both village areas. Despite the similarities in ES use, priorities for biodiversity conservation align with farmers’ understanding of farm processes and practices. Farmers with training in agroecology prioritized strategies that are ecologically friendly while farmers with no agroecology training prioritized the use of strict regulations. Importantly, the results show that agroecology can potentially contribute to biodiversity conservation and food security, with climate change mitigation co-benefits. The findings generally contribute to debates on land sparing and land sharing conservation strategies and advance social learning theory as it pertains to acquiring agroecological knowledge for improved yield and a sustainable environment. 
    more » « less