skip to main content

Title: Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data
Mapping crop types and land cover in smallholder farming systems in sub-Saharan Africa remains a challenge due to data costs, high cloud cover, and poor temporal resolution of satellite data. With improvement in satellite technology and image processing techniques, there is a potential for integrating data from sensors with different spectral characteristics and temporal resolutions to effectively map crop types and land cover. In our Malawi study area, it is common that there are no cloud-free images available for the entire crop growth season. The goal of this experiment is to produce detailed crop type and land cover maps in agricultural landscapes using the Sentinel-1 (S-1) radar data, Sentinel-2 (S-2) optical data, S-2 and PlanetScope data fusion, and S-1 C2 matrix and S-1 H/α polarimetric decomposition. We evaluated the ability to combine these data to map crop types and land cover in two smallholder farming locations. The random forest algorithm, trained with crop and land cover type data collected in the field, complemented with samples digitized from Google Earth Pro and DigitalGlobe, was used for the classification experiments. The results show that the S-2 and PlanetScope fused image + S-1 covariance (C2) matrix + H/α polarimetric decomposition (an entropy-based decomposition more » method) fusion outperformed all other image combinations, producing higher overall accuracies (OAs) (>85%) and Kappa coefficients (>0.80). These OAs represent a 13.53% and 11.7% improvement on the Sentinel-2-only (OAs < 80%) experiment for Thimalala and Edundu, respectively. The experiment also provided accurate insights into the distribution of crop and land cover types in the area. The findings suggest that in cloud-dense and resource-poor locations, fusing high temporal resolution radar data with available optical data presents an opportunity for operational mapping of crop types and land cover to support food security and environmental management decision-making. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1852587
Publication Date:
NSF-PAR ID:
10319791
Journal Name:
Remote Sensing
Volume:
13
Issue:
4
ISSN:
2072-4292
Sponsoring Org:
National Science Foundation
More Like this
  1. Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved amore »classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest.« less
  2. Coastal mangrove forests provide important ecosystem goods and services, including carbon sequestration, biodiversity conservation, and hazard mitigation. However, they are being destroyed at an alarming rate by human activities. To characterize mangrove forest changes, evaluate their impacts, and support relevant protection and restoration decision making, accurate and up-to-date mangrove extent mapping at large spatial scales is essential. Available large-scale mangrove extent data products use a single machine learning method commonly with 30 m Landsat imagery, and significant inconsistencies remain among these data products. With huge amounts of satellite data involved and the heterogeneity of land surface characteristics across large geographic areas, finding the most suitable method for large-scale high-resolution mangrove mapping is a challenge. The objective of this study is to evaluate the performance of a machine learning ensemble for mangrove forest mapping at 20 m spatial resolution across West Africa using Sentinel-2 (optical) and Sentinel-1 (radar) imagery. The machine learning ensemble integrates three commonly used machine learning methods in land cover and land use mapping, including Random Forest (RF), Gradient Boosting Machine (GBM), and Neural Network (NN). The cloud-based big geospatial data processing platform Google Earth Engine (GEE) was used for pre-processing Sentinel-2 and Sentinel-1 data. Extensive validation has demonstrated thatmore »the machine learning ensemble can generate mangrove extent maps at high accuracies for all study regions in West Africa (92%–99% Producer’s Accuracy, 98%–100% User’s Accuracy, 95%–99% Overall Accuracy). This is the first-time that mangrove extent has been mapped at a 20 m spatial resolution across West Africa. The machine learning ensemble has the potential to be applied to other regions of the world and is therefore capable of producing high-resolution mangrove extent maps at global scales periodically.« less
  3. Grassland monitoring can be challenging because it is time-consuming and expensive to measure grass condition at large spatial scales. Remote sensing offers a time- and cost-effective method for mapping and monitoring grassland condition at both large spatial extents and fine temporal resolutions. Combinations of remotely sensed optical and radar imagery are particularly promising because together they can measure differences in moisture, structure, and reflectance among land cover types. We combined multi-date radar (PALSAR-2 and Sentinel-1) and optical (Sentinel-2) imagery with field data and visual interpretation of aerial imagery to classify land cover in the Masai Mara National Reserve, Kenya using machine learning (Random Forests). This study area comprises a diverse array of land cover types and changes over time due to seasonal changes in precipitation, seasonal movements of large herds of resident and migratory ungulates, fires, and livestock grazing. We classified twelve land cover types with user’s and producer’s accuracies ranging from 66%–100% and an overall accuracy of 86%. These methods were able to distinguish among short, medium, and tall grass cover at user’s accuracies of 83%, 82%, and 85%, respectively. By yielding a highly accurate, fine-resolution map that distinguishes among grasses of different heights, this work not only outlinesmore »a viable method for future grassland mapping efforts but also will help inform local management decisions and research in the Masai Mara National Reserve.« less
  4. Abstract
    This dataset incorporates Mexico City related essential data files associated with Beth Tellman&#39;s dissertation: Mapping and Modeling Illicit and Clandestine Drivers of Land Use Change: Urban Expansion in Mexico City and Deforestation in Central America. It contains spatio-temporal datasets covering three domains; i) urban expansion from 1992-2015, ii) district and section electoral records for 6 elections from 2000-2015, iii) land titling (regularization) data for informal settlements from 1997-2012 on private and ejido land. The urban expansion data includes 30m resolution urban land cover for 1992 and 2013 (methods published in Goldblatt et al 2018), and a shapefile of digitized urban informal expansion in conservation land from 2000-2015 using the Worldview-2 satellite. The electoral records include shapefiles with the geospatial boundaries of electoral districts and sections for each election, and .csv files of the number of votes per party for mayoral, delegate, and legislature candidates. The private land titling data includes the approximate (in coordinates) location and date of titles given by the city government (DGRT) extracted from public records (Diario Oficial) from 1997-2012. The titling data on ejido land includes a shapefile of georeferenced polygons taken from photos in the CORETT office or ejido land that has been expropriatedMore>>
  5. Sankey, Temuulen ; Van Den Broeke, Matthew (Ed.)
    Rapid impact assessment of cyclones on coastal ecosystems is critical for timely rescue and rehabilitation operations in highly human-dominated landscapes. Such assessments should also include damage assessments of vegetation for restoration planning in impacted natural landscapes. Our objective is to develop a remote sensing-based approach combining satellite data derived from optical (Sentinel-2), radar (Sentinel-1), and LiDAR (Global Ecosystem Dynamics Investigation) platforms for rapid assessment of post-cyclone inundation in nonforested areas and vegetation damage in a primarily forested ecosystem. We apply this multi-scalar approach for assessing damages caused by the cyclone Amphan that hit coastal India and Bangladesh in May 2020, severely flooding several districts in the two countries, and causing destruction to the Sundarban mangrove forests. Our analysis shows that at least 6821 sq. km. land across the 39 study districts was inundated even after 10 days after the cyclone. We further calculated the change in forest greenness as the difference in normalized difference vegetation index (NDVI) pre- and post-cyclone. Our findings indicate a <0.2 unit decline in NDVI in 3.45 sq. km. of the forest. Rapid assessment of post-cyclone damage in mangroves is challenging due to limited navigability of waterways, but critical for planning of mitigation and recovery measures.more »We demonstrate the utility of Otsu method, an automated statistical approach of the Google Earth Engine platform to identify inundated areas within days after a cyclone. Our radar-based inundation analysis advances current practices because it requires minimal user inputs, and is effective in the presence of high cloud cover. Such rapid assessment, when complemented with detailed information on species and vegetation composition, can inform appropriate restoration efforts in severely impacted regions and help decision makers efficiently manage resources for recovery and aid relief. We provide the datasets from this study on an open platform to aid in future research and planning endeavors.« less