skip to main content


Search for: All records

Creators/Authors contains: "Wang, Jinwen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the proliferation of safety-critical real-time systems in our daily life, it is imperative that their security is protected to guarantee their functionalities. To this end, one of the most powerful modern security primitives is the enforcement of data flow integrity. However, the run-time overhead can be prohibitive for real-time cyber-physical systems. On the other hand, due to strong safety requirements on such real-time cyber-physical systems, platforms are often designed with enough reservation such that the system remains real-time even if it is experiencing the worst-case execution time. We conducted a measurement study on eight popular CPS systems and found the worst-case execution time is often at least five times the average run time. In this paper, we propose opportunistic data flow integrity, OP-DFI, that takes advantage of the system reservation to enforce data flow integrity to the CPS software. To avoid impacting the real-time property, OP-DFI tackles the challenge of slack estimation and run-time policy swapping to take advantage of the extra time in the system opportunistically. To ensure the security protection remains coherent, OP-DFI leverages in-line reference monitors and hardware-assisted features to perform dynamic fine-grained sandboxing. We evaluated OP-DFI on eight real-time CPS. With a worst-case execution time overhead of 2.7%, OP-DFI effectively performs DFI checking on 95.5% of all memory operations and 99.3% of safety-critical control-related memory operations on average. 
    more » « less
    Free, publicly-accessible full text available August 14, 2025
  2. Graphics Processing Units (GPU) are increasingly deployed on Cyber-physical Systems (CPSs), frequently used to perform real-time safety-critical functions, such as object detection on autonomous vehicles. As a result, availability is important for GPU tasks in CPS platforms. However, existing Trusted Execution Environments (TEE) solutions with availability guarantees focus only on CPU computing.To bridge this gap, we propose AvaGPU, a TEE that guarantees real-time availability for CPU tasks involving GPU execution under compromised OS. There are three technical challenges. First, to prevent malicious resource contention due to separate scheduling of CPU and GPU tasks, we proposed a CPU-GPU co-scheduling framework that couples the priority of CPU and GPU tasks. Second, we propose software-based secure preemption on GPU tasks to bound the degree of priority inversion on GPU. Third, we propose a new split design of GPU driver with minimized Trusted Computing Base (TCB) to achieve secure and efficient GPU management for CPS. We implement a prototype of AvaGPU on the Jetson AGX Orin platform. The system is evaluated on benchmark, synthetic tasks, and real-world applications with 15.87% runtime overhead on average. 
    more » « less
    Free, publicly-accessible full text available November 15, 2024
  3. Tiny machine learning (TinyML) is an essential component of emerging smart microcontrollers (MCUs). However, the protection of the intellectual property (IP) of the model is an increasing concern due to the lack of desktop/server-grade resources on these power-constrained devices. In this paper, we propose STML, a system and algorithm co-design to Secure IP of TinyML on MCUs with ARM TrustZone. Our design jointly optimizes memory utilization and latency while ensuring the security and accuracy of emerging models. We implemented a prototype and benchmarked with 7 models, demonstrating STML reduces 40% of model protection runtime overhead on average. 
    more » « less
  4. With the proliferation of autonomous safety-critical cyber-physical systems (CPS) in our daily life, their security is becoming ever more important. Remote attestation is a powerful mechanism to enable remote verification of system integrity. While recent developments have made it possible to efficiently attest IoT operations, autonomous systems that are built on top of real-time cyber-physical control loops and execute missions independently present new unique challenges. In this paper, we formulate a new security property, Realtime Mission Execution Integrity (RMEI) to provide proof of correct and timely execution of the missions. While it is an attractive property, measuring it can incur prohibitive overhead for the real-time autonomous system. To tackle this challenge, we propose policy-based attestation of compartments to enable a trade-off between the level of details in measurement and runtime overhead. To further minimize the impact on real-time responsiveness, multiple techniques were developed to improve the performance, including customized software instrumentation and timing recovery through re-execution. We implemented a prototype of ARI and evaluated its performance on five CPS platforms. A user study involving 21 developers with different skill sets was conducted to understand the usability of our solution. 
    more » « less
    Free, publicly-accessible full text available August 9, 2024