Metachronous rowing is a swimming mechanism widely adopted by small marine invertebrate like comb jellies, in which rows of appendages perform propulsive strokes sequentially in a coordinated manner with a fixed phase difference. To simulate metachronous rowing at intermediate Reynolds number, in this paper, a row of flexible cilia models was placed inside the flow field, with their roots stroke at a sinusoidal function of time and a fixed phase difference. A fully coupled two-way numerical solver was developed, which solves the Navier-Stokes equations for the fluid field coupled with the differential equation for the flexible cilia model. This numerical solver is applied to investigate how the row of cilia models are deformed by the hydrodynamic forces (pressure and shear) and momentum and thus impact hydrodynamic performance. Results show that the passive deformation of cilia potentially improve the hydrodynamic performance compared to the rigid cilia. With the metachronous rowing mechanism, the cilia generate the thrust to move forward. The approach used in this study presents a general way to explore the fluid dynamics of complex fluid-structure interaction problems.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available October 29, 2024 -
This paper numerically studies the flow dynamics of aerial undulation of a snake-like model, which is adapted from the kinematics of the flying snake (Chrysopelea) undergoing a gliding process. The model applies aerial undulation periodically in a horizontal plane where a range of angle of attack (AOA) is assigned to model the real gliding motion. The flow is simulated using an immersed-boundary-method-based incompressible flow solver. Local mesh refinement mesh blocks are implemented to ensure the grid resolutions around the moving body. Results show that the undulating body produces the maximum lift at 45° of AOA. Vortex dynamics analysis has revealed a series of vortex structures including leading-edge vortices (LEV), trailing-edge vortices, and tip vortices around the body. Changes in other key parameters including the undulation frequency and Reynolds number are also found to affect the aerodynamics of the studied snake-like model, where increasing of undulation frequency enhances vortex steadiness and increasing of Reynolds number enhances lift production due to the strengthened LEVs. This study represents the first study of both the aerodynamics of the whole body of the snake as well as its undulatory motion, providing a new basis for investigating the mechanics of elongated flexible flyers.
-
The wavelength of undulatory kinematics of fish is an important parameter to determine their hydrodynamic performance. This study focuses on numerical examination of this feature by reconstructing the real physiological model and kinematics of steadily swimming Jack Fish. We perform three-dimensional numerical simulations for flows over these models composed of the trunk, and dorsal, anal, and caudal fins. Moreover, we prescribe the carangiform-like motion for its undulation for a range of wavelengths. Undulation with larger wavelengths improves the hydrodynamic performance of the carangiform swimmer in terms of better thrust production by the caudal fin, lower drag production on the trunk, and reduced power consumption by the trunk. This coincides with the formation of stronger posterior body vortices and leading-edge vortices with more circulation on the caudal fin. The real kinematics of Jack Fish surpasses the performance of those with prescribed motion owing to the flexibility of the caudal fin.more » « less
-
Three-dimensional numerical simulations are carried out to study the hydrodynamic performance and flow features of a bio-inspired underwater propulsor. The propulsor is constituted by a passive pitching panel. The leading edge of the panel is prescribed under a periodic heaving motion while the panel pitches passively due to the employing of a stiffness-lumped torsional spring at the leading edge. Effects of the torsional spring stiffness have been put emphases on. A real-time tunable stiffness strategy is presented and employed in the study. We first study the passive pitching effects on the hydrodynamics and flow features of the panel using a series of constant stiffness and then we study the tunable stiffness effects using cosinusoidal curve based waveforms, in which the effects of phase difference (ϕ) between the stiffness profile and the oscillation motion and as well as the effects of stiffness fluctuation amplitude (Gk) are investigated, respectively. The stiffness profile beneficial for propulsion efficiency is further applied to cases with different oscillation amplitudes. A high-fidelity immersed boundary method based direct numerical simulation (DNS) solver is employed to acquire the fluid dynamics and to simulate the flow. The panel passive pitching motion is solved by coupling the DNS flow solver and the Euler rigid body dynamic equation. Results show that for the constant stiffness cases, the panel generates sinusoidal-like pitching motion, and in certain stiffness range, flexibility could benefit efficiency while holding some extent of stiffness could enhance the thrust. For the tunable stiffness cases, it is found that both the mean thrust and propulsive efficiency improved when the stiffness change is in-phase with the heaving motion (ϕ = 0). The largest mean thrust is found at ϕ = 120 degree.more » « less
-
Abstract To understand the governing mechanisms of bio-inspired swimming has always been challenging due to intense interactions between flexible bodies of natural aquatic species and water around them. Advanced modal decomposition techniques provide us with tools to develop more in-depth understating about these complex dynamical systems. In this paper, we employ proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) techniques to extract energetically strongest spatio-temporal orthonormal components of complex kinematics of a Crevalle jack (
Caranx hippos ) fish. Then, we present a computational framework for handling fluid–structure interaction related problems in order to investigate their contributions towards the overall dynamics of highly nonlinear systems. We find that the undulating motion of this fish can be described by only two standing-wave like spatially orthonormal modes. Constructing the data set from our numerical simulations for flows over the membranous caudal fin of the jack fish, our modal analyses reveal that only the first few modes receive energy from both the fluid and structure, but the contribution of the structure in the remaining modes is minimal. For the viscous and transitional flow conditions considered here, both spatially and temporally orthonormal modes show strikingly similar coherent flow structures. Our investigations are expected to assist in developing data-driven reduced-order mathematical models to examine the dynamics of bio-inspired swimming robots and develop new and effective control strategies to bring their performance closer to real fish species. -
Finlets are a series of small non-retractable fins common to scombrid fishes (mackerels, bonitos and tunas), which are known for their high swimming speed. It is hypothesized that these small fins could potentially affect propulsive performance. Here, we combine experimental and computational approaches to investigate the hydrodynamics of finlets in yellowfin tuna ( Thunnus albacares ) during steady swimming. High-speed videos were obtained to provide kinematic data on the in vivo motion of finlets. High-fidelity simulations were then carried out to examine the hydrodynamic performance and vortex dynamics of a biologically realistic multiple-finlet model with reconstructed kinematics. It was found that finlets undergo both heaving and pitching motion and are delayed in phase from anterior to posterior along the body. Simulation results show that finlets were drag producing and did not produce thrust. The interactions among finlets helped reduce total finlet drag by 21.5%. Pitching motions of finlets helped reduce the power consumed by finlets during swimming by 20.8% compared with non-pitching finlets. Moreover, the pitching finlets created constructive forces to facilitate posterior body flapping. Wake dynamics analysis revealed a unique vortex tube matrix structure and cross-flow streams redirected by the pitching finlets, which supports their hydrodynamic function in scombrid fishes. Limitations on modelling and the generality of results are also discussed.more » « less
-
Abstract Uvula‐induced snoring and associated obstructive sleep apnea is a complex phenomenon characterized by vibrating structures and highly transient vortex dynamics. This study aimed to extract signature features of uvula wake flows of different pathological origins and develop a linear reduced‐order surrogate model for flow control. Six airway models were developed with two uvula kinematics and three pharynx constriction levels. A direct numerical simulation (DNS) flow solver based on the immersed boundary method was utilized to resolve the wake flows induced by the flapping uvula. Key spatial and temporal responses of the flow to uvula kinematics and pharynx constriction were investigated using continuous wavelet transform (CWT), proper orthogonal decomposition (POD), and dynamic mode decomposition (DMD). Results showed highly complex patterns in flow topologies. CWT analysis revealed multiscale correlations in both time and space between the flapping uvular and wake flows. POD analysis successfully separated the flows among the six models by projecting the datasets in the vector space spanned by the first three eigenmodes. Perceivable differences were also captured in the time evolution of the DMD modes among the six models. A linear reduced‐order surrogate model was constructed from the predominant eigenmodes obtained from the DMD analysis and predicted vortex patterns from this surrogate model agreed well with the corresponding DNS simulations. The computational and analytical platform presented in this study could bring a variety of applications in breathing‐related disorders and beyond. The computational efficiency of surrogate modeling makes it well suited for flow control, forecasting, and uncertainty analyses.