skip to main content

Search for: All records

Creators/Authors contains: "Wang, Qianjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Characterization of histone proteoforms with various post‐translational modifications (PTMs) is critical for a better understanding of functions of histone proteoforms in epigenetic control of gene expression. Mass spectrometry (MS)‐based top‐down proteomics (TDP) is a valuable approach for delineating histone proteoforms because it can provide us with a bird's‐eye view of histone proteoforms carrying diverse combinations of PTMs. Here, we present the first example of coupling capillary zone electrophoresis (CZE), ion mobility spectrometry (IMS), and MS for online multi‐dimensional separations of histone proteoforms. Our CZE‐high‐field asymmetric waveform IMS (FAIMS)‐MS/MS platform identified 366 (ProSight PD) and 602 (TopPIC) histone proteoforms from a commercial calf histone sample using a low microgram amount of histone sample as the starting material. CZE‐FAIMS‐MS/MS improved the number of histone proteoform identifications by about 3 folds compared to CZE‐MS/MS alone (without FAIMS). The results indicate that CZE‐FAIMS‐MS/MS could be a useful tool for comprehensive characterization of histone proteoforms with high sensitivity.

    more » « less
  2. Abstract

    We present a large‐scale top‐down proteomics (TDP) study of plant leaf and chloroplast proteins, achieving the identification of over 4700 unique proteoforms. Using capillary zone electrophoresis coupled with tandem mass spectrometry analysis of offline size‐exclusion chromatography fractions, we identify 3198 proteoforms for total leaf and 1836 proteoforms for chloroplast, with 1024 and 363 proteoforms having post‐translational modifications, respectively. The electrophoretic mobility prediction of capillary zone electrophoresis allowed us to validate post‐translational modifications that impact the charge state such as acetylation and phosphorylation. Identified modifications included Trp (di)oxidation events on six chloroplast proteins that may represent novel targets of singlet oxygen sensing. Furthermore, our TDP data provides direct experimental evidence of the N‐ and C‐terminal residues of numerous mature proteoforms from chloroplast, mitochondria, endoplasmic reticulum, and other sub‐cellular localizations. With this information, we suggest true transit peptide cleavage sites and correct sub‐cellular localization signal predictions. This large‐scale analysis illustrates the power of top‐down proteoform identification of post‐translational modifications and intact sequences that can benefit our understanding of both the structure and function of hundreds of plant proteins.

    more » « less
  3. Multilevel proteomics aims to delineate proteins at the peptide (bottom-up proteomics), proteoform (top-down proteomics), and protein complex (native proteomics) levels. Capillary electrophoresis-mass spectrometry (CE-MS) can achieve highly efficient separation and highly sensitive detection of complex mixtures of peptides, proteoforms, and even protein complexes because of its substantial technical progress. CE-MS has become a valuable alternative to the routinely used liquid chromatography-mass spectrometry for multilevel proteomics. This review summarizes the most recent (2019-2021) advances of CE-MS for multilevel proteomics regarding technological progress and biological applications. We also provide brief perspectives on CE-MS for multilevel proteomics at the end, highlighting some future directions and potential challenges. 
    more » « less
  4. null (Ed.)
    Mass spectrometry (MS)-based denaturing top-down proteomics (dTDP) requires high-capacity separation and extensive gas-phase fragmentation of proteoforms. Herein, we coupled capillary zone electrophoresis (CZE) to electron-capture collision-induced dissociation (ECciD) on an Agilent 6545 XT quadrupole time-of-flight (Q-TOF) mass spectrometer for dTDP for the first time. During ECciD, the protein ions were first fragmented using ECD, followed by further activation and fragmentation by applying a CID potential. In this pilot study, we optimized the CZE-ECciD method for small proteins (lower than 20 kDa) regarding the charge state of protein parent ions for fragmentation and the CID potential applied to maximize the protein backbone cleavage coverage and the number of sequence-informative fragment ions. The CZE-ECciD Q-TOF platform provided extensive backbone cleavage coverage for three standard proteins lower than 20 kDa from only single charge states in a single CZE-MS/MS run in the targeted MS/MS mode, including ubiquitin (97%, +7, 8.6 kDa), superoxide dismutase (SOD, 87%, +17, 16 kDa), and myoglobin (90%, +16, 17 kDa). The CZE-ECciD method produced comparable cleavage coverage of small proteins (i.e., myoglobin) with direct-infusion MS studies using electron transfer dissociation (ETD), activated ion-ETD, and combinations of ETD and collision-based fragmentation on high-end orbitrap mass spectrometers. The results render CZE-ECciD a new tool for dTDP to enhance both separation and gas-phase fragmentation of proteoforms. 
    more » « less
  5. null (Ed.)