Silicon carbide (SiC) recently emerged as a promising photonic and quantum material owing to its unique material properties. In this work, we carried out an exploratory investigation of the Pockels effect in high-quality-factor (high-
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Q ) 4H-SiC microresonators and demonstrated gigahertz-level electro-optic modulation for the first time. The extracted Pockels coefficients show certain variations among 4H-SiC wafers from different manufacturers, with the magnitudes ofr 13andr 33estimated to be in the range of (0.3–0.7) pm/V and (0–0.03) pm/V, respectively.Free, publicly-accessible full text available March 9, 2024 -
Free, publicly-accessible full text available July 10, 2023
-
Silicon carbide has recently emerged as a promising photonics material due to its unique properties, including possessing strong second- and third-order nonlinear coefficients and hosting various color centers that can be utilized for a wealth of quantum applications. Here, we report the design and demonstration of octave-spanning microcombs in a 4H-silicon-carbide-on-insulator platform for the first time, to our knowledge. Such broadband operation is enabled by optimized nanofabrication achieving
million intrinsic quality factors in a 36-μm-radius microring resonator, and careful dispersion engineering by investigating the dispersion properties of different mode families. For example, for the fundamental transverse-electric mode whose dispersion can be tailored by simply varying the microring waveguide width, we realized a microcomb spectrum covering the wavelength range from 1100 nm to 2400 nm with an on-chip power near 120 mW. While the observed comb state is verified to be chaotic and not soliton, attaining such a large bandwidth is a crucial step towards realizing self-referencing. In addition, we also observed a coherent soliton-crystal state for the fundamental transverse-magnetic mode, which exhibits stronger dispersion than the fundamental transverse-electric mode and hence a narrower bandwidth.