Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reproducible environmental modelling often relies on spatial datasets as inputs, typically manually subset for specific areas. Yet, models can benefit from a data distribution approach facilitated by online repositories, and automating processes to foster reproducibility. This study introduces a method leveraging diverse state-scale spatial datasets to create cohesive packages for GIS-based environmental modelling. These datasets were generated and shared via GeoServer and THREDDS Data Server Connected to HydroShare, contrasting with conventional distribution methods. Using the Regional Hydro-Ecologic Simulation System (RHESSys) across three U.S. catchment-scale watersheds, we demonstrate minimal errors in spatial inputs and model streamflow outputs compared to traditional approaches. This spatial data-sharing method facilitates consistent model creation, fostering reproducibility. Its broader impact allows scientists to tailor the method to various use cases, such as exploring different scales beyond state-scale or applying it to other online repositories using existing data distribution systems, eliminating the need to develop their own.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Ames, Daniel P (Ed.)Hydrological streamline delineation is critical for effective environmental management, influencing agriculture sustainability, river dynamics, watershed planning, and more. This study develops a novel approach to combining transfer learning with convolutional neural networks that capitalize on image-based pre-trained models to improve the accuracy and transferability of streamline delineation. We evaluate the performance of eleven image-based pre-trained models and a baseline model using datasets from Rowan County, North Carolina, and Covington River, Virginia in the USA. Our results demonstrate that when models are adapted to a new area, the fine-tuned ImageNet pre-trained model exhibits superior predictive accuracy, markedly higher than the models trained from scratch or those only fine-tuned on the same area. Moreover, the pre-trained model achieves better smoothness and connectivity between classified streamline channels. These findings underline the effectiveness of transfer learning in enhancing the delineation of hydrological streamlines across varied geographies, offering a scalable solution for accurate and efficient environmental modelling.more » « lessFree, publicly-accessible full text available October 1, 2025
-
As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal dynamics modeling on mobility networks is a challenging task particularly considering scenarios where open-world events drive mobility behavior deviated from the routines. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes on mobility networks, nor adaptive to unprecedented volatility brought by potential open-world events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced event-aware spatio-temporal network, namely EAST-Net, is evaluated on several real-world datasets with a wide variety and coverage of open-world events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. What is more, experiments show generalization ability of EAST-Net to perform zero-shot inference over different open-world events that have not been seen.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available July 17, 2025
-
Abstract Maintaining educational resources and training materials as timely, current, and aligned with the needs of students, practitioners, and other users of geospatial technologies is a persistent challenge. This is particularly problematic within CyberGIS, a subfield of Geographic Information Science and Technology (GIS&T) that involves high‐performance computing and advanced cyberinfrastructure to address computation‐ and data‐intensive problems. In this study, we analyzed and compared content from two open educational resources: (1) a popular online web resource that regularly covers CyberGIS‐related topics (GIS Stack Exchange) and (2) existing and proposed content in the GIS&T Body of Knowledge. While current curricula may build a student's conceptual understanding of CyberGIS, there is a noticeable lack of resources for practical implementation of CyberGIS tools. The results highlight discrepancies between the attention and frequency of CyberGIS topics according to a popular online help resource and the CyberGIS academic community.
Free, publicly-accessible full text available August 7, 2025 -
Free, publicly-accessible full text available July 17, 2025
-
Understanding urban heat exposure dynamics is critical for public health, urban management, and climate change resilience. Near real-time analysis of urban heat enables quick decision-making and timely resource allocation, thereby enhancing the well-being of urban residents, especially during heatwaves or electricity shortages. To serve this purpose, we develop a cyberGIS framework to analyze and visualize human sentiments of heat exposure dynamically based on near real-time location-based social media (LBSM) data. Large volumes and low-cost LBSM data, together with a content analysis algorithm based on natural language processing are used effectively to generate near real-time heat exposure maps from human sentiments on social media at both city and national scales with km spatial resolution and census tract spatial unit. We conducted a case study to visualize and analyze human sentiments of heat exposure in Chicago and the United States in September 2021. Enabled with high-performance computing, dynamic visualization of heat exposure is achieved with fine spatiotemporal scales while heat exposure detected from social media data can be used to understand heat exposure from a human perspective and allow timely responses to extreme heat.more » « lessFree, publicly-accessible full text available July 2, 2025
-
CyberGIS—geographic information science and systems (GIS) based on advanced cyberinfrastructure—is becoming increasingly important to tackling a variety of socio-environmental problems like climate change, disaster management, and water security. While recent advances in high-performance computing (HPC) have the potential to help address these problems, the technical knowledge required to use HPC has posed challenges to many domain experts. In this paper, we present CyberGIS-Compute: a geospatial middleware tool designed to democratize HPC access for solving diverse socio-environmental problems. CyberGIS-Compute does this by providing a simple user interface in Jupyter, streamlining the process of integrating domain-specific models with HPC, and establishing a suite of APIs friendly to domain experts.more » « lessFree, publicly-accessible full text available May 1, 2025
-
Today a tremendous amount of geospatial knowledge is hidden in massive volumes of text data. To facilitate flexible and powerful geospatial analysis and applications, we introduce a new architecture: geospatial knowledge hypercube, a multi-scale, multidimensional knowledge structure that integrates information from geospatial dimensions, thematic themes and diverse application semantics, extracted and computed from spatial-related text data. To construct such a knowledge hypercube, weakly supervised language models are leveraged for automatic, dynamic and incremental extraction of heterogeneous geospatial data, thematic themes, latent connections and relationships, and application semantics, through combining a variety of information from unstructured text, structured tables, and maps. The hypercube lays a foundation for many knowledge discovery and in-depth spatial analysis, and other advanced applications. We have deployed a prototype web application of proposed geospatial knowledge hypercube for public access at: https://hcwebapp.cigi.illinois.edu/.more » « less