skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 6, 2026
  2. Free, publicly-accessible full text available April 24, 2026
  3. Pore wetting is a major constraint to the performance of membrane distillation (MD) for hypersaline brine treatment. Despite the existence of surfactants with diverse properties, an explicit relationship between the properties of surfactants and their capabilities of inducing pore wetting has yet to be established. In this study, we perform a comparative analysis of the wetting behaviors of various surfactants with different charges and molecular weights in MD desalination. The induction time of surfactants to initiate pore wetting was correlated to the apparent contact angle and surface tension of the feedwater. Our results show that different surfactants resulting in similar feedwater surface tensions can lead to drastically different wetting potential, suggesting that both charge of the head group and molecular weight of surfactants have a significant influence on membrane pore wetting. Further, we demonstrate that parameters that have been commonly used to indicate wetting potential, including apparent contact angle and solution surface tension, are not reliable in predicting the wetting behavior of MD membranes, which is intricately linked with surfactant properties such as charge and molecular size. We envision that our results not only improve our fundamental understanding of surfactant-induced wetting but also provide valuable insights that necessitate thorough consideration of surfactant properties in evaluating wetting potential and membrane wetting resistance for MD desalination. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. This experimental work investigates the impact dynamics of drops on vertically oriented, three-dimensional-printed (3D-printed) fiber arrays with variations in packing density, fiber arrangement, and wettability. These fiber arrays are inspired by mammalian fur, and while not wholly representative of the entire morphological range of fur, they do reside within its spectrum. We define an aspect ratio, a modified fiber porosity relative to the drop size, that characterizes various impact regimes. Using energy conservation, we derive a model relating drop penetration depth in vertical fibers to the Weber number. In sparse fibers where the Ohnesorge number is less than 4×10−3, penetration depth scales linearly with the impact Weber number. In hydrophobic fibers, density reduces penetration depth when the contact angle is sufficiently high. Hydrophilic arrays have greater penetration than their hydrophobic counterparts due to capillarity, a result that contrasts the drop impact-initiated infiltration of horizontal fibers. Vertical capillary infiltration of the penetrated liquid is observed whenever the Bond number is less than 0.11. For hydrophilic fibers, we predict that higher density will promote drop penetration when the contact angle is sufficiently low. Complete infiltration by the drop is achieved at sufficient times regardless of drop impact velocity. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Increasingly functional microscopic machines are poised to have massive technical influence in areas including targeted drug delivery, precise surgical interventions, and environmental remediation. Such functionalities would increase markedly if collections of these microscopic machines were able to coordinate their function to achieve cooperative emergent behaviors. Implementing such coordination, however, requires a scalable strategy for synchronization—a key stumbling block for achieving collective behaviors of multiple autonomous microscopic units. Here, we show that pulse-coupled complementary metal-oxide semiconductor oscillators offer a tangible solution for such scalable synchronization. Specifically, we designed low-power oscillating modules with attached mechanical elements that exchange electronic pulses to advance their neighbor’s phase until the entire system is synchronized with the fastest oscillator or “leader.” We showed that this strategy is amenable to different oscillator connection topologies. The cooperative behaviors were robust to disturbances that scrambled the synchronization. In addition, when connections between oscillators were severed, the resulting subgroups synchronized on their own. This advance opens the door to functionalities in microscopic robot swarms that were once considered out of reach, ranging from autonomously induced fluidic transport to drive chemical reactions to cooperative building of physical structures at the microscale. 
    more » « less
    Free, publicly-accessible full text available November 27, 2025
  6. Free, publicly-accessible full text available December 13, 2025
  7. An electronically actuated artificial hinged ciliary platform capable of generating efficient bidirectional pumping at the microscale. 
    more » « less
    Free, publicly-accessible full text available September 24, 2025
  8. Free, publicly-accessible full text available October 29, 2025
  9. Free, publicly-accessible full text available March 21, 2026
  10. Free, publicly-accessible full text available September 1, 2025