skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 16, 2026
  2. Free, publicly-accessible full text available June 29, 2026
  3. Free, publicly-accessible full text available May 6, 2026
  4. Free, publicly-accessible full text available April 13, 2026
  5. Abstract Achieving mobile liquid droplets on solid surfaces is crucial for various practical applications, such as self‐cleaning and anti‐fouling coatings. The last two decades have witnessed remarkable progress in designing functional surfaces, including super‐repellent surfaces and lubricant‐infused surfaces, which allow droplets to roll/slide on the surfaces. However, it remains a challenge to enable droplet motion on hydrophilic solid surfaces. In this work, we demonstrate mobile droplets containing ionic surfactants on smooth hydrophilic surfaces that are charged similarly to surfactant molecules. The ionic surfactant‐laden droplets display ultra‐low contact angle and ultra‐low sliding angle simultaneously on the hydrophilic surfaces. The sliding of the droplet is enabled by the adsorbed surfactant ahead of three‐phase contact line, which is regulated by the electrostatic interaction between ionic surfactant and charged solid surface. The droplet can maintain its motion even when the hydrophilic surface has defects. Furthermore, we demonstrate controlled manipulation of ionic surfactant‐laden droplets on hydrophilic surfaces with different patterns. We envision that our simple technique for achieving mobile droplets on hydrophilic surfaces can pave the way to novel slippery surfaces for different applications. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  6. Abstract In this paper, we study the sharp constants in fractional Sobolev inequalities associated with the regional fractional Laplacian in domains. 
    more » « less
  7. Free, publicly-accessible full text available August 1, 2026
  8. Free, publicly-accessible full text available April 13, 2026
  9. Free, publicly-accessible full text available February 25, 2026
  10. Free, publicly-accessible full text available February 16, 2026