skip to main content

Search for: All records

Creators/Authors contains: "Wang, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning multi-agent system dynamics has been extensively studied for various real-world applications, such as molecular dynamics in biology, multi-body system in physics, and particle dynamics in material science. Most of the existing models are built to learn single system dynamics, which learn the dynamics from observed historical data and predict the future trajectory. In practice, however, we might observe multiple systems that are generated across different environments, which differ in latent exogenous factors such as temperature and gravity. One simple solution is to learn multiple environment-specific models, but it fails to exploit the potential commonalities among the dynamics across environments and offers poor prediction results where per-environment data is sparse or limited. Here, we present GG-ODE (Generalized Graph Ordinary Differential Equations), a machine learning framework for learning continuous multi-agent system dynamics across environments. Our model learns system dynamics using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs) to capture the continuous interaction among agents. We achieve the model generalization by assuming the dynamics across different environments are governed by common physics laws that can be captured via learning a shared ODE function. The distinct latent exogenous factors learned for each environment are incorporated into the ODE functionmore »to account for their differences. To improve model performance, we additionally design two regularization losses to (1) enforce the orthogonality between the learned initial states and exogenous factors via mutual information minimization; and (2) reduce the temporal variance of learned exogenous factors within the same system via contrastive learning. Experiments over various physical simulations show that our model can accurately predict system dynamics, especially in the long range, and can generalize well to new systems with few observations.« less
    Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. The NUMA architecture accommodates the hardware trend of an increasing number of CPU cores. It requires the coop- eration of memory allocators to achieve good performance for multithreaded applications. Unfortunately, existing allo- cators do not support NUMA architecture well. This paper presents a novel memory allocator – NUMAlloc , that is de- signed for the NUMA architecture. NUMAlloc is centered on a binding-based memory management. On top of it, NUMAl- loc proposes an “origin-aware memory management” to ensure the locality of memory allocations and deallocations, as well as a method called “incremental sharing” to balance the performance benefits and memory overhead of using transparent huge pages. According to our extensive evalua- tion, NUMAlloc hasthebestperformanceamongallevaluated allocators, running 15.7% faster than the second-best allo- cator (mimalloc), and 20.9% faster than the default Linux allocator with reasonable memory overhead. NUMAlloc is also scalable to 128 threads and is ready for deployment.
    Free, publicly-accessible full text available June 18, 2024
  4. Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box.
    Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available April 15, 2024
  6. Open Source Software (OSS) is forming the spines of technology infrastructures, attracting millions of talents to contribute. Notably, it is challenging and critical to consider both the developers’ interests and the semantic features of the project code to recommend appropriate development tasks to OSS developers. In this paper, we formulate the novel problem of code recommendation, whose purpose is to predict the future contribution behaviors of developers given their interaction history, the semantic features of source code, and the hierarchical file structures of projects. We introduce CODER, a novel graph-based CODE Recommendation framework for open source software developers, which accounts for the complex interactions among multiple parties within the system. CODER jointly models microscopic user-code interactions and macroscopic user-project interactions via a heterogeneous graph and further bridges the two levels of information through aggregation on filestructure graphs that reflect the project hierarchy. Moreover, to overcome the lack of reliable benchmarks, we construct three largescale datasets to facilitate future research in this direction. Extensive experiments show that our CODER framework achieves superior performance under various experimental settings, including intraproject, cross-project, and cold-start recommendation.
    Free, publicly-accessible full text available April 30, 2024
  7. Free, publicly-accessible full text available May 24, 2024
  8. Free, publicly-accessible full text available March 8, 2024
  9. Free, publicly-accessible full text available March 26, 2024
  10. Recent studies find existing self-supervised speech encoders contain primarily acoustic rather than semantic information. As a result, pipelined supervised automatic speech recognition (ASR) to large language model (LLM) systems achieve state-of-the-art results on semantic spoken language tasks by utilizing rich semantic representations from the LLM. These systems come at the cost of labeled audio transcriptions, which is expensive and time-consuming to obtain. We propose a taskagnostic unsupervised way of incorporating semantic information from LLMs into selfsupervised speech encoders without labeled audio transcriptions. By introducing semantics, we improve existing speech encoder spoken language understanding (SLU) performance by over 5% on intent classification (IC), with modest gains in named entity resolution (NER) and slot filling (SF), and spoken question answering (SQA) FF1 score by over 2%. Our approach, which uses no ASR data, achieves similar performance as methods trained on over 100 hours of labeled audio transcripts, demonstrating the feasibility of unsupervised semantic augmentations to existing speech encoders.
    Free, publicly-accessible full text available July 1, 2024