skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Wang, Wenping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a novel framework for computing the medial axis transform of 3D shapes while preserving their medial features via restricted power diagram (RPD). Medial features, including external features such as the sharp edges and corners of the input mesh surface and internal features such as the seams and junctions of medial axis, are important shape descriptors both topologically and geometrically. However, existing medial axis approximation methods fail to capture and preserve them due to the fundamentally under-sampling in the vicinity of medial features, and the difficulty to build their correct connections. In this paper we use the RPD of medial spheres and its affiliated structures to help solve these challenges. The dual structure of RPD provides the connectivity of medial spheres. The surfacic restricted power cell (RPC) of each medial sphere provides the tangential surface regions that these spheres have contact with. The connected components (CC) of surfacic RPC give us the classification of each sphere, to be on a medial sheet, a seam, or a junction. They allow us to detect insufficient sphere sampling around medial features and develop necessary conditions to preserve them. Using this RPD-based framework, we are able to construct high quality medial meshes with features preserved. Compared with existing sampling-based or voxel-based methods, our method is the first one that can preserve not only external features but also internal features of medial axes. 
    more » « less
  2. This article presents a new method to compute a self-intersection free high-dimensional Euclidean embedding (SIFHDE^2) for surfaces and volumes equipped with an arbitrary Riemannian metric. It is already known that given a high-dimensional (high-d) embedding, one can easily compute an anisotropic Voronoi diagram by back-mapping it to 3D space. We show here how to solve the inverse problem, i.e., given an input metric, compute a smooth intersection-free high-d embedding of the input such that the pullback metric of the embedding matches the input metric. Our numerical solution mechanism matches the deformation gradient of the 3D -> higher-d mapping with the given Riemannian metric. We demonstrate the applicability of our method, by using it to construct anisotropic Restricted Voronoi Diagram (RVD) and anisotropic meshing, that are otherwise extremely difficult to compute. In SIFHDE^2 -space constructed by our algorithm, difficult 3D anisotropic computations are replaced with simple Euclidean computations, resulting in an isotropic RVD and its dual mesh on this high-d embedding. Results are compared with the state-of-the-art in anisotropic surface and volume meshings using several examples and evaluation metrics. 
    more » « less
  3. We present a particle-based approach to generate field-aligned tetrahedral meshes, guided by cubic lattices, including BCC and FCC lattices. Given a volumetric domain with an input frame field and a user-specified edge length for the cubic lattice, we optimize a set of particles to form the desired lattice pattern. A Gaussian Hole Kernel associated with each particle is constructed. Minimizing the sum of kernels of all particles encourages the particles to form a desired layout, e.g., field-aligned BCC and FCC. The resulting set of particles can be connected to yield a high quality field-aligned tetrahedral mesh. As demonstrated by experiments and comparisons, the field-aligned and lattice-guided approach can produce higher quality isotropic and anisotropic tetrahedral meshes than state-of-the-art meshing methods. 
    more » « less
  4. In this paper, a novel shape matching energy is proposed to suppress slivers for tetrahedral mesh generation. Given a volumetric domain with a user-specified template (regular) simplex, the tetrahedral meshing problem is transformed into a shape matching formulation with a gradient-based energy, i.e., the gradient of linear shape function. It effectively inhibits small heights and suppresses all the badly-shaped tetrahedrons in tetrahedral meshes. The proposed approach iteratively optimizes vertex positions and mesh connectivity, and makes the simplices in the computed mesh as close as possible to the template simplex. We compare our results qualitatively and quantitatively with the state-of-the-art algorithm in tetrahedral meshing on extensive models using the standard measurement criteria. 
    more » « less