Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a novel topology-preserving 3D medial axis computation framework based on volumetric restricted power diagram (RPD), while preserving the medial features and geometric convergence simultaneously, for both 3D CAD and organic shapes. The volumetric RPD discretizes the input 3D volume into sub-regions given a set of medial spheres. With this intermediate structure, we convert the homotopy equivalency between the generated medial mesh and the input 3D shape into a localized contractibility checking for each restricted element (power cell, power face, power edge), by checking their connected components and Euler characteristics. We further propose a fractional Euler characteristic algorithm for efficient GPU-based computation of Euler characteristic for each restricted element on the fly while computing the volumetric RPD. Compared with existing voxel-based or point-cloud-based methods, our approach is the first to adaptively and directly revise the medial mesh without globally modifying the dependent structure, such as voxel size or sampling density, while preserving its topology and medial features. In comparison with the feature preservation method MATFP [Wang et al. 2022], our method provides geometrically comparable results with fewer spheres and more robustly captures the topology of the input 3D shape.more » « lessFree, publicly-accessible full text available December 19, 2025
-
Free, publicly-accessible full text available December 3, 2025
-
In mesh simplification, common requirements like accuracy, triangle quality, and feature alignment are often considered as a trade-off. Existing algorithms concentrate on just one or a few specific aspects of these requirements. For example, the well-known Quadric Error Metrics (QEM) approach [Garland and Heckbert 1997] prioritizes accuracy and can preserve strong feature lines/points as well, but falls short in ensuring high triangle quality and may degrade weak features that are not as distinctive as strong ones. In this paper, we propose a smooth functional that simultaneously considers all of these requirements. The functional comprises a normal anisotropy term and a Centroidal Voronoi Tessellation (CVT) [Du et al. 1999] energy term, with the variables being a set of movable points lying on the surface. The former inherits the spirit of QEM but operates in a continuous setting, while the latter encourages even point distribution, allowing various surface metrics. We further introduce a decaying weight to automatically balance the two terms. We selected 100 CAD models from the ABC dataset [Koch et al. 2019], along with 21 organic models, to compare the existing mesh simplification algorithms with ours. Experimental results reveal an important observation: the introduction of a decaying weight effectively reduces the conflict between the two terms and enables the alignment of weak features. This distinctive feature sets our approach apart from most existing mesh simplification methods and demonstrates significant potential in shape understanding. Please refer to the teaser figure for illustration.more » « lessFree, publicly-accessible full text available July 19, 2025
-
Free, publicly-accessible full text available July 1, 2025
-
Harnessing commonsense knowledge poses a significant challenge for machine comprehension systems. This paper primarily focuses on incorporating a specific subset of commonsense knowledge, namely, script knowledge. Script knowledge is about sequences of actions that are typically performed by individuals in everyday life. Our experiments were centered around the MCScript dataset, which was the basis of the SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge. As a baseline, we utilized our Three-Way Attentive Networks (TriANs) framework to model the interactions among passages, questions, and answers. Building upon the TriAN, we proposed to: (1) integrate a pre-trained language model to capture script knowledge; (2) introduce multi-layer attention to facilitate multi-hop reasoning; and (3) incorporate positional embeddings to enhance the model’s capacity for event-ordering reasoning. In this paper, we present our proposed methods and prove their efficacy in improving script knowledge integration and reasoning.more » « less
-
Estimating normals with globally consistent orientations for a raw point cloud has many downstream geometry processing applications. Despite tremendous efforts in the past decades, it remains challenging to deal with an unoriented point cloud with various imperfections, particularly in the presence of data sparsity coupled with nearby gaps or thin-walled structures. In this paper, we propose a smooth objective function to characterize the requirements of an acceptable winding-number field, which allows one to find the globally consistent normal orientations starting from a set of completely random normals. By taking the vertices of the Voronoi diagram of the point cloud as examination points, we consider the following three requirements: (1) the winding number is either 0 or 1, (2) the occurrences of 1 and the occurrences of 0 are balanced around the point cloud, and (3) the normals align with the outside Voronoi poles as much as possible. Extensive experimental results show that our method outperforms the existing approaches, especially in handling sparse and noisy point clouds, as well as shapes with complex geometry/topology.more » « less
-
We propose a novel framework for computing the medial axis transform of 3D shapes while preserving their medial features via restricted power diagram (RPD). Medial features, including external features such as the sharp edges and corners of the input mesh surface and internal features such as the seams and junctions of medial axis, are important shape descriptors both topologically and geometrically. However, existing medial axis approximation methods fail to capture and preserve them due to the fundamentally under-sampling in the vicinity of medial features, and the difficulty to build their correct connections. In this paper we use the RPD of medial spheres and its affiliated structures to help solve these challenges. The dual structure of RPD provides the connectivity of medial spheres. The surfacic restricted power cell (RPC) of each medial sphere provides the tangential surface regions that these spheres have contact with. The connected components (CC) of surfacic RPC give us the classification of each sphere, to be on a medial sheet, a seam, or a junction. They allow us to detect insufficient sphere sampling around medial features and develop necessary conditions to preserve them. Using this RPD-based framework, we are able to construct high quality medial meshes with features preserved. Compared with existing sampling-based or voxel-based methods, our method is the first one that can preserve not only external features but also internal features of medial axes.more » « less
-
We present a particle-based approach to generate field-aligned tetrahedral meshes, guided by cubic lattices, including BCC and FCC lattices. Given a volumetric domain with an input frame field and a user-specified edge length for the cubic lattice, we optimize a set of particles to form the desired lattice pattern. A Gaussian Hole Kernel associated with each particle is constructed. Minimizing the sum of kernels of all particles encourages the particles to form a desired layout, e.g., field-aligned BCC and FCC. The resulting set of particles can be connected to yield a high quality field-aligned tetrahedral mesh. As demonstrated by experiments and comparisons, the field-aligned and lattice-guided approach can produce higher quality isotropic and anisotropic tetrahedral meshes than state-of-the-art meshing methods.more » « less
-
This article presents a new method to compute a self-intersection free high-dimensional Euclidean embedding (SIFHDE^2) for surfaces and volumes equipped with an arbitrary Riemannian metric. It is already known that given a high-dimensional (high-d) embedding, one can easily compute an anisotropic Voronoi diagram by back-mapping it to 3D space. We show here how to solve the inverse problem, i.e., given an input metric, compute a smooth intersection-free high-d embedding of the input such that the pullback metric of the embedding matches the input metric. Our numerical solution mechanism matches the deformation gradient of the 3D -> higher-d mapping with the given Riemannian metric. We demonstrate the applicability of our method, by using it to construct anisotropic Restricted Voronoi Diagram (RVD) and anisotropic meshing, that are otherwise extremely difficult to compute. In SIFHDE^2 -space constructed by our algorithm, difficult 3D anisotropic computations are replaced with simple Euclidean computations, resulting in an isotropic RVD and its dual mesh on this high-d embedding. Results are compared with the state-of-the-art in anisotropic surface and volume meshings using several examples and evaluation metrics.more » « less