skip to main content

Search for: All records

Creators/Authors contains: "Wang, Xiaojia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Experiments have shown that flow in compliant microchannels can become unstable at a much lower Reynolds number than the corresponding flow in a rigid conduit. Therefore, it has been suggested that the wall's elastic compliance can be exploited towards new modalities of microscale mixing. While previous studies mainly focused on the local instability induced by the fluid–structure interactions (FSIs) in the system, we derive a one-dimensional (1-D) model to study the FSI's effect on the global instability. The proposed 1-D FSI model is tailored to long, shallow rectangular microchannels with a deformable top wall, similar to the experiments. Going beyond the usual lubrication flows analysed in these geometries, we include finite fluid inertia and couple the reduced flow equations to a novel reduced 1-D wall deformation equation. Although a quantitative comparison with previous experiments is difficult, the behaviours of the proposed model show, qualitatively, agreement with the experimental observations, and capture several key effects. Specifically, we find the critical conditions under which the inflated base state of the 1-D FSI model is linearly unstable to infinitesimal perturbations. The critical Reynolds numbers predicted are in agreement with experimental observations. The unstable modes are highly oscillatory, with frequencies close to the naturalmore »frequency of the wall, suggesting that the observed instabilities are resonance phenomena. Furthermore, during the start-up from an undeformed initial state, self-sustained oscillations can be triggered by FSI. Our modelling framework can be applied to other microfluidic systems with similar geometric scale separation under different operating conditions.« less
    Free, publicly-accessible full text available November 10, 2023
  2. Free, publicly-accessible full text available November 1, 2023
  3. AlN thin films are enabling significant progress in modern optoelectronics, power electronics, and microelectromechanical systems. The various AlN growth methods and conditions lead to different film microstructures. In this report, phonon scattering mechanisms that impact the cross-plane (κ z ; along the c-axis) and in-plane (κ r ; parallel to the c-plane) thermal conductivities of AlN thin films prepared by various synthesis techniques are investigated. In contrast to bulk single crystal AlN with an isotropic thermal conductivity of ∼330 W/m K, a strong anisotropy in the thermal conductivity is observed in the thin films. The κ z shows a strong film thickness dependence due to phonon-boundary scattering. Electron microscopy reveals the presence of grain boundaries and dislocations that limit the κ r . For instance, oriented films prepared by reactive sputtering possess lateral crystalline grain sizes ranging from 20 to 40 nm that significantly lower the κ r to ∼30 W/m K. Simulation results suggest that the self-heating in AlN film bulk acoustic resonators can significantly impact the power handling capability of RF filters. A device employing an oriented film as the active piezoelectric layer shows an ∼2.5× higher device peak temperature as compared to a device based on an epitaxial film.
    Free, publicly-accessible full text available November 7, 2023
  4. Abstract
    Zip files with codes and data to make the plots in the manuscript "Reduced modeling and global instability of finite-Reynolds-number flow in compliant rectangular channels" by Wang & Christov (2022).
  5. Abstract
    The Jupyter Notebook makes the plots in the manuscript "Flow rate--pressure drop relations for new configurations of slender compliant tubes arising in microfluidics experiments" by Wang, Pande & Christov (2022). Zip file provides SimVascular case files.
  6. Hydrogenated amorphous silicon (a-Si:H) has drawn keen interest as a thin-film semiconductor and superb passivation layer in high-efficiency silicon solar cells due to its low cost, low processing temperature, high compatibility with substrates, and scalable manufacturing. Although the impact of hydrogenation on the structural, optical, and electronic properties of a-Si:H has been extensively studied, the underlying physics of its impact on the thermal properties is still unclear. Here, we synthesize a-Si:H films with well-controlled hydrogen concentrations using plasma-enhanced chemical vapor deposition and systematically study the thermal conductivity of these a-Si:H films using time-domain thermoreflectance. We find that the reduction of thermal conductivity of a-Si:H films is attributed to the suppression of diffuson and propagon contributions as the hydrogen concentration increases. At the maximum hydrogen concentration of 25.4 atomic percentage, the contributions from diffusons and propagons to the thermal conductivity are decreased by 40% (from 1.10 to 0.67 W m −1 K −1 ) and 64% (from 0.61 to 0.22 W m −1 K −1 ), respectively. Such a significant reduction in the thermal conductivity of a-Si:H originates from the hydrogen induced material softening, the decrease in density, and phonon-defect scattering. The results of this work provide fundamental insights into themore »thermal transport properties of a-Si:H thin films, which is beneficial for the design and optimization of amorphous silicon-based technologies including photovoltaics, large-area electronics, and thermoelectric devices.« less
    Free, publicly-accessible full text available December 21, 2022
  7. Free, publicly-accessible full text available September 9, 2023
  8. Abstract
    The Jupyter Notebook generates all the data and makes all the plots in the published paper "Reduced models of unidirectional flows in compliant rectangular ducts at finite Reynolds number" by Wang and Christov in Phys. Fluids, 2021.