skip to main content

Search for: All records

Creators/Authors contains: "Wang, Yanzhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data redundancy is ubiquitous in the inputs and intermediate results of Deep Neural Networks (DNN) . It offers many significant opportunities for improving DNN performance and efficiency and has been explored in a large body of work. These studies have scattered in many venues across several years. The targets they focus on range from images to videos and texts, and the techniques they use to detect and exploit data redundancy also vary in many aspects. There is not yet a systematic examination and summary of the many efforts, making it difficult for researchers to get a comprehensive view of the prior work, the state of the art, differences and shared principles, and the areas and directions yet to explore. This article tries to fill the void. It surveys hundreds of recent papers on the topic, introduces a novel taxonomy to put the various techniques into a single categorization framework, offers a comprehensive description of the main methods used for exploiting data redundancy in improving multiple kinds of DNNs on data, and points out a set of research opportunities for future exploration. 
    more » « less
    Free, publicly-accessible full text available October 31, 2024
  2. Free, publicly-accessible full text available April 12, 2024
  3. Free, publicly-accessible full text available June 18, 2024
  4. Free, publicly-accessible full text available June 18, 2024
  5. With the ever-increasing popularity of edge devices, it is necessary to implement real-time segmentation on the edge for autonomous driving and many other applications. Vision Transformers (ViTs) have shown considerably stronger results for many vision tasks. However, ViTs with the fullattention mechanism usually consume a large number of computational resources, leading to difficulties for realtime inference on edge devices. In this paper, we aim to derive ViTs with fewer computations and fast inference speed to facilitate the dense prediction of semantic segmentation on edge devices. To achieve this, we propose a pruning parameterization method to formulate the pruning problem of semantic segmentation. Then we adopt a bi-level optimization method to solve this problem with the help of implicit gradients. Our experimental results demonstrate that we can achieve 38.9 mIoU on ADE20K val with a speed of 56.5 FPS on Samsung S21, which is the highest mIoU under the same computation constraint with real-time inference. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  6. Vision transformers (ViTs) have recently obtained success in many applications, but their intensive computation and heavy memory usage at both training and inference time limit their generalization. Previous compression algorithms usually start from the pre-trained dense models and only focus on efficient inference, while time-consuming training is still unavoidable. In contrast, this paper points out that the million-scale training data is redundant, which is the fundamental reason for the tedious training. To address the issue, this paper aims to introduce sparsity into data and proposes an end-to-end efficient training framework from three sparse perspectives, dubbed Tri-Level E-ViT. Specifically, we leverage a hierarchical data redundancy reduction scheme, by exploring the sparsity under three levels: number of training examples in the dataset, number of patches (tokens) in each example, and number of connections between tokens that lie in attention weights. With extensive experiments, we demonstrate that our proposed technique can noticeably accelerate training for various ViT architectures while maintaining accuracy. Remarkably, under certain ratios, we are able to improve the ViT accuracy rather than compromising it. For example, we can achieve 15.2% speedup with 72.6% (+0.4) Top-1 accuracy on Deit-T, and 15.7% speedup with 79.9% (+0.1) Top-1 accuracy on Deit-S. This proves the existence of data redundancy in ViT. Our code
is released at

    more » « less
    Free, publicly-accessible full text available June 27, 2024
  7. Free, publicly-accessible full text available February 1, 2024