skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yichao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vital signs monitoring has gained increasing attention due to its ability to indicate various human health and well-being conditions. The development of WiFi sensing technologies has made it possible to monitor vital signs using ubiquitous WiFi signals and devices. However, most existing approaches are dedicated to single-person scenarios. A few WiFi sensing approaches can achieve multi-person vital signs monitoring, whereas they are not identity-aware and sensitive to interferences in the environment. In this paper, we propose SpaceBeat, an identity-aware and interference-robust multi-person vital sign monitoring system using commodity WiFi. In particular, our system separates multiple people and locates each person in the spatial domain by leveraging multiple antennas. We analyze the change of signals at the location of each person to achieve identity-aware vital signs monitoring. We also design a contrastive principal component analysis-contrastive learning framework to mitigate interferences caused by other moving people. We evaluate SpaceBeat in various challenging environments, including interference scenarios, non-line-of-sight scenarios, different distances, etc. Our system achieves an average accuracy of 99.1% for breathing monitoring and 97.9% for heartbeat monitoring. 
    more » « less
    Free, publicly-accessible full text available August 22, 2025
  2. This paper introduces MultiMesh, a multi-subject 3D human mesh construction system based on commodity WiFi. Our system can reuse commodity WiFi devices in the environment and is capable of working in non-line-of-sight (NLoS) conditions compared with the traditional computer vision-based approach. Specifically, we leverage an L-shaped antenna array to generate the two-dimensional angle of arrival (2D AoA) of reflected signals for subject separation in the physical space. We further leverage the angle of departure and time of flight of the signal to enhance the resolvability for precise separation of close subjects. Then we exploit information from various signal dimensions to mitigate the interference of indirect reflections according to different signal propagation paths. Moreover, we employ the continuity of human movement in the spatial-temporal domain to track weak reflected signals of faraway subjects. Finally, we utilize a deep learning model to digitize 2D AoA images of each subject into the 3D human mesh. We conducted extensive experiments in real-world multi-subject scenarios under various environments to evaluate the performance of our system. For example, we conduct experiments with occlusion and perform human mesh construction for different distances between two subjects and different distances between subjects and WiFi devices. The results show that MultiMesh can accurately construct 3D human meshes for multiple users with an average vertex error of 4cm. The evaluations also demonstrate that our system could achieve comparable performance for unseen environments and people. Moreover, we also evaluate the accuracy of spatial information extraction and the performance of subject detection. These evaluations demonstrate the robustness and effectiveness of our system. 
    more » « less
  3. This paper presents GoPose, a 3D skeleton-based human pose estimation system that uses WiFi devices at home. Our system leverages the WiFi signals reflected off the human body for 3D pose estimation. In contrast to prior systems that need specialized hardware or dedicated sensors, our system does not require a user to wear or carry any sensors and can reuse the WiFi devices that already exist in a home environment for mass adoption. To realize such a system, we leverage the 2D AoA spectrum of the signals reflected from the human body and the deep learning techniques. In particular, the 2D AoA spectrum is proposed to locate different parts of the human body as well as to enable environment-independent pose estimation. Deep learning is incorporated to model the complex relationship between the 2D AoA spectrums and the 3D skeletons of the human body for pose tracking. Our evaluation results show GoPose achieves around 4.7cm of accuracy under various scenarios including tracking unseen activities and under NLoS scenarios. 
    more » « less