Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Tropical cyclone rainfall (TCR) extensively affects coastal communities, primarily through inland flooding. The impact of global climate changes on TCR is complex and debatable. This study uses an XGBoost machine learning model with 19-year meteorological data and hourly satellite precipitation observations to predict TCR for individual storms. The model identifies dust optical depth (DOD) as a key predictor that enhances performance evidently. The model also uncovers a nonlinear and boomerang-shape relationship between Saharan dust and TCR, with a TCR peak at 0.06 DOD and a sharp decrease thereafter. This indicates a shift from microphysical enhancement to radiative suppression at high dust concentrations. The model also highlights meaningful correlations between TCR and meteorological factors like sea surface temperature and equivalent potential temperature near storm cores. These findings illustrate the effectiveness of machine learning in predicting TCR and understanding its driving factors and physical mechanisms.more » « lessFree, publicly-accessible full text available July 26, 2025
-
Abstract The export of the North Atlantic Deep Water (NADW) from the subpolar North Atlantic is known to affect the variability in the lower limb of the Atlantic meridional overturning circulation (AMOC). However, the respective impact from the transport in the upper NADW (UNADW) and lower NADW (LNADW) layers, and from the various transport branches through the boundary and interior flows, on the subpolar overturning variability remains elusive. To address this, the spatiotemporal characteristics of the circulation of NADW throughout the eastern subpolar basins are examined, mainly based on the 2014–20 observations from the transatlantic Overturning in the Subpolar North Atlantic Program (OSNAP) array. It reveals that the time-mean transport within the overturning’s lower limb across the eastern subpolar gyre [−13.0 ± 0.5 Sv (1 Sv ≡ 106m3s−1)] mostly occurs in the LNADW layer (−9.4 Sv or 72% of the mean), while the lower limb variability is mainly concentrated in the UNADW layer (57% of the total variance). This analysis further demonstrates a dominant role in the lower limb variability by coherent intraseasonal changes across the region that result from a basinwide barotropic response to changing wind fields. By comparison, there is just a weak seasonal cycle in the flows along the western boundary of the basins, in response to the surface buoyancy-induced water mass transformation.more » « less
-
Abstract Mitochondrial features and activities vary in a cell type- and developmental stage-dependent manner to critically impact cell function and lineage development. Particularly in male germ cells, mitochondria are uniquely clustered into intermitochondrial cement (IMC), an electron-dense granule in the cytoplasm to support proper spermatogenesis. But it remains puzzling how mitochondria assemble into such a stable structure as IMC without limiting membrane during development. Here, we showed that GASZ (germ cell-specific, ankyrin repeat, SAM and basic leucine zipper domain containing protein), a mitochondrion-localized germ cell-specific protein, self-interacted with each other to cluster mitochondria and maintain protein stability for IMC assembling. When the self-interaction of GASZ was disrupted by either deleting its critical interaction motif or using a blocking peptide, the IMC structure was destabilized, which in turn led to impaired spermatogenesis. Notably, the blocked spermatogenesis was reversible once GASZ self-interaction was recovered. Our findings thus reveal a critical mechanism by which mitochondrion-based granules are properly assembled to support germ cell development while providing an alternative strategy for developing nonhormonal male contraceptives by targeting IMC protein interactions.more » « less
-
Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis. With recent advancements in Earth observation satellites, we leverage SIF observations from the Tropospheric Monitoring Instrument (TROPOMI) with unprecedented spatial resolution and near-daily global coverage, to investigate the impact of aerosols on photosynthesis. Our analysis reveals that on weekends when there is more plant-available sunlight due to less particulate pollution, 64% of regions across Europe show increased SIF, indicating more photosynthesis. Moreover, we find a widespread negative relationship between SIF and aerosol loading across Europe. This suggests the possible reduction in photosynthesis as aerosol levels increase, particularly in ecosystems limited by light availability. By considering two plausible scenarios of improved air quality—reducing aerosol levels to the weekly minimum 3-d values and levels observed during the COVID-19 period—we estimate a potential of 41 to 50 Mt net additional annual CO2uptake by terrestrial ecosystems in Europe. This work assesses human impacts on photosynthesis via aerosol pollution at continental scales using satellite observations. Our results highlight i) the use of spatiotemporal variations in satellite SIF to estimate the human impacts on photosynthesis and ii) the potential of reducing particulate pollution to enhance ecosystem productivity.more » « less
-
Free, publicly-accessible full text available June 1, 2025
-
ABSTRACT IntroductionCurrent wearables that collect heart rate and acceleration were not designed for children and/or do not allow access to raw signals, making them fundamentally unverifiable. This study describes the creation and calibration of an open-source multichannel platform (PATCH) designed to measure heart rate and acceleration in children ages 3–8 yr. MethodsChildren (N = 63; mean age, 6.3 yr) participated in a 45-min protocol ranging in intensities from sedentary to vigorous activity. Actiheart-5 was used as a comparison measure. We calculated mean bias, mean absolute error (MAE) mean absolute percent error (MA%E), Pearson correlations, and Lin’s concordance correlation coefficient (CCC). ResultsMean bias between PATCH and Actiheart heart rate was 2.26 bpm, MAE was 6.67 bpm, and M%E was 5.99%. The correlation between PATCH and Actiheart heart rate was 0.89, and CCC was 0.88. For acceleration, mean bias was 1.16 mg and MAE was 12.24 mg. The correlation between PATCH and Actiheart was 0.96, and CCC was 0.95. ConclusionsThe PATCH demonstrated clinically acceptable accuracies to measure heart rate and acceleration compared with a research-grade device.more » « less
-
Yamada, Yosuke (Ed.)The purpose of this study was to evaluate the reliability and validity of the raw accelerometry output from research-grade and consumer wearable devices compared to accelerations produced by a mechanical shaker table. Raw accelerometry data from a total of 40 devices (i.e., n = 10 ActiGraph wGT3X-BT, n = 10 Apple Watch Series 7, n = 10 Garmin Vivoactive 4S, and n = 10 Fitbit Sense) were compared to reference accelerations produced by an orbital shaker table at speeds ranging from 0.6 Hz (4.4 milligravity-mg) to 3.2 Hz (124.7mg). Two-way random effects absolute intraclass correlation coefficients (ICC) tested inter-device reliability. Pearson product moment, Lin’s concordance correlation coefficient (CCC), absolute error, mean bias, and equivalence testing were calculated to assess the validity between the raw estimates from the devices and the reference metric. Estimates from Apple, ActiGraph, Garmin, and Fitbit were reliable, with ICCs = 0.99, 0.97, 0.88, and 0.88, respectively. Estimates from ActiGraph, Apple, and Fitbit devices exhibited excellent concordance with the reference CCCs = 0.88, 0.83, and 0.85, respectively, while estimates from Garmin exhibited moderate concordance CCC = 0.59 based on the mean aggregation method. ActiGraph, Apple, and Fitbit produced similar absolute errors = 16.9mg, 21.6mg, and 22.0mg, respectively, while Garmin produced higher absolute error = 32.5mg compared to the reference. ActiGraph produced the lowest mean bias 0.0mg (95%CI = -40.0, 41.0). Equivalence testing revealed raw accelerometry data from all devices were not statistically significantly within the equivalence bounds of the shaker speed. Findings from this study provide evidence that raw accelerometry data from Apple, Garmin, and Fitbit devices can be used to reliably estimate movement; however, no estimates were statistically significantly equivalent to the reference. Future studies could explore device-agnostic and harmonization methods for estimating physical activity using the raw accelerometry signals from the consumer wearables studied herein.more » « less
-
Abstract Study ObjectivesEvaluate wrist-placed accelerometry predicted heartrate compared to electrocardiogram (ECG) heartrate in children during sleep. MethodsChildren (n = 82, 61% male, 43.9% black) wore a wrist-placed Apple Watch Series 7 (AWS7) and ActiGraph GT9X during a polysomnogram. Three-Axis accelerometry data was extracted from AWS7 and the GT9X. Accelerometry heartrate estimates were derived from jerk (the rate of acceleration change), computed using the peak magnitude frequency in short time Fourier Transforms of Hilbert transformed jerk computed from acceleration magnitude. Heartrates from ECG traces were estimated from R-R intervals using R-pulse detection. Lin’s concordance correlation coefficient (CCC), mean absolute error (MAE), and mean absolute percent error (MAPE) assessed agreement with ECG estimated heart rate. Secondary analyses explored agreement by polysomnography sleep stage and a signal quality metric. ResultsThe developed scripts are available on Github. For the GT9X, CCC was poor at −0.11 and MAE and MAPE were high at 16.8 (SD = 14.2) beats/minute and 20.4% (SD = 18.5%). For AWS7, CCC was moderate at 0.61 while MAE and MAPE were lower at 6.4 (SD = 9.9) beats/minute and 7.3% (SD = 10.3%). Accelerometry estimated heartrate for AWS7 was more closely related to ECG heartrate during N2, N3 and REM sleep than lights on, wake, and N1 and when signal quality was high. These patterns were not evident for the GT9X. ConclusionsRaw accelerometry data extracted from AWS7, but not the GT9X, can be used to estimate heartrate in children while they sleep. Future work is needed to explore the sources (i.e. hardware, software, etc.) of the GT9X’s poor performance.more » « less