skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Mitochondrial features and activities vary in a cell type- and developmental stage-dependent manner to critically impact cell function and lineage development. Particularly in male germ cells, mitochondria are uniquely clustered into intermitochondrial cement (IMC), an electron-dense granule in the cytoplasm to support proper spermatogenesis. But it remains puzzling how mitochondria assemble into such a stable structure as IMC without limiting membrane during development. Here, we showed that GASZ (germ cell-specific, ankyrin repeat, SAM and basic leucine zipper domain containing protein), a mitochondrion-localized germ cell-specific protein, self-interacted with each other to cluster mitochondria and maintain protein stability for IMC assembling. When the self-interaction of GASZ was disrupted by either deleting its critical interaction motif or using a blocking peptide, the IMC structure was destabilized, which in turn led to impaired spermatogenesis. Notably, the blocked spermatogenesis was reversible once GASZ self-interaction was recovered. Our findings thus reveal a critical mechanism by which mitochondrion-based granules are properly assembled to support germ cell development while providing an alternative strategy for developing nonhormonal male contraceptives by targeting IMC protein interactions.

     
    more » « less
  2. Abstract. There has been a growing concern that most climate models predict precipitation that is too frequent, likely due to lack of reliable subgrid variabilityand vertical variations in microphysical processes in low-level warm clouds.In this study, the warm-cloud physics parameterizations in the singe-columnconfigurations of NCAR Community Atmospheric Model version 6 and 5 (SCAM6and SCAM5, respectively) are evaluated using ground-based and airborneobservations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Aerosol and Cloud Experiments in the EasternNorth Atlantic (ACE-ENA) field campaign near the Azores islands during2017–2018. The 8-month single-column model (SCM) simulations show that both SCAM6 and SCAM5 cangenerally reproduce marine boundary layer cloud structure, majormacrophysical properties, and their transition. The improvement in warm-cloud properties from the Community Atmospheric Model 5 and 6 (CAM5 to CAM6) physics can be found through comparison with the observations. Meanwhile, both physical schemes underestimate cloud liquidwater content, cloud droplet size, and rain liquid water content butoverestimate surface rainfall. Modeled cloud condensation nuclei (CCN)concentrations are comparable with aircraft-observed ones in the summer but areoverestimated by a factor of 2 in winter, largely due to the biases in thelong-range transport of anthropogenic aerosols like sulfate. We also testthe newly recalibrated autoconversion and accretion parameterizations thataccount for vertical variations in droplet size. Compared to theobservations, more significant improvement is found in SCAM5 than in SCAM6.This result is likely explained by the introduction of subgrid variationsin cloud properties in CAM6 cloud microphysics, which further suppresses thescheme's sensitivity to individual warm-rain microphysical parameters. Thepredicted cloud susceptibilities to CCN perturbations in CAM6 are within areasonable range, indicating significant progress since CAM5 which produces anaerosol indirect effect that is too strong. The present study emphasizes theimportance of understanding biases in cloud physics parameterizations bycombining SCM with in situ observations.

     
    more » « less
  3. Backdoor attacks have been shown to be a serious threat against deep learning systems such as biometric authentication and autonomous driving. An effective backdoor attack could enforce the model misbehave under certain predefined conditions, i.e., triggers, but behave normally otherwise. The triggers of existing attacks are mainly injected in the pixel space, which tend to be visually identifiable at both training and inference stages and detectable by existing defenses. In this paper, we propose a simple but effective and invisible black-box backdoor attack FTROJAN through trojaning the frequency domain. The key intuition is that triggering perturbations in the frequency domain correspond to small pixel-wise perturbations dispersed across the entire image, breaking the underlying assumptions of existing defenses and making the poisoning images visually indistinguishable from clean ones. Extensive experimental evaluations show that FTROJAN is highly effective and the poisoning images retain high perceptual quality. Moreover, we show that FTROJAN can robustly elude or significantly degenerate the performance of existing defenses. 
    more » « less
  4. Increased wildfire events constitute a significant threat to life and property in the United States. Wildfire impact on severe storms and weather hazards is another pathway that threatens society, and our understanding of which is very limited. Here, we use unique modeling developments to explore the effects of wildfires in the western US (mainly California and Oregon) on precipitation and hail in the central US. We find that the western US wildfires notably increase the occurrences of heavy precipitation rates by 38% and significant severe hail (≥2 in.) by 34% in the central United States. Both heat and aerosols from wildfires play an important role. By enhancing surface high pressure and increasing westerly and southwesterly winds, wildfires in the western United States produce ( 1 ) stronger moisture and aerosol transport to the central United States and ( 2 ) larger wind shear and storm-relative helicity in the central United States. Both the meteorological environment more conducive to severe convective storms and increased aerosols contribute to the enhancements of heavy precipitation rates and large hail. Moreover, the local wildfires in the central US also enhance the severity of storms, but their impact is notably smaller than the impact of remote wildfires in California and Oregon because of the lessened severity of the local wildfires. As wildfires are projected to be more frequent and severe in a warmer climate, the influence of wildfires on severe weather in downwind regions may become increasingly important. 
    more » « less
  5. Abstract

    The momentum transport by orographic gravity waves (OGWs) plays an important role in driving the large-scale circulation throughout the atmosphere and is subject to parameterization in numerical models. Current parameterization schemes, which were originally developed for coarse-resolution models, commonly assume that unresolved OGWs are hydrostatic. With the increase in the horizontal resolution ofstate-of-the-artnumerical models, unresolved OGWs are of smaller horizontal scale and more influenced by nonhydrostatic effects (NHE), thus challenging use of the hydrostatic assumption. Based on the analytical formulas for nonhydrostatic OGWs derived in our recent study, the orographic gravity wave drag (OGWD) parameterization scheme in the Model for Prediction Across Scales is revised by accounting for NHE. Global simulations with 30-km horizontal resolution are conducted to investigate NHE on the momentum transport of OGWs and their impacts on the large-scale circulation in boreal winter. NHE are evident in regions of complex terrain such as the Tibetan Plateau, Rocky Mountains, southern Andes, and eastern Antarctica. The parameterized surface wave momentum flux can be either reduced or enhanced depending on the relative importance of NHE and model physics–dynamics interactions. The NHE corrections to the OGWD scheme significantly reduce the easterly biases in the polar stratosphere of the Northern Hemisphere, due to both weakened OGWD in the upper troposphere and lower stratosphere and suppressed upward propagation of resolved waves into the stratosphere. However, the revised OGWD scheme only has a weak influence on the large-scale circulation in the Southern Hemisphere during boreal winter.

     
    more » « less
  6. Abstract The Southern Ocean is covered by a large amount of clouds with high cloud albedo. However, as reported by previous climate model intercomparison projects, underestimated cloudiness and overestimated absorption of solar radiation (ASR) over the Southern Ocean lead to substantial biases in climate sensitivity. The present study revisits this long-standing issue and explores the uncertainty sources in the latest CMIP6 models. We employ 10-year satellite observations to evaluate cloud radiative effect (CRE) and cloud physical properties in five CMIP6 models that provide comprehensive output of cloud, radiation, and aerosol. The simulated longwave, shortwave, and net CRE at the top of atmosphere in CMIP6 are comparable with the CERES satellite observations. Total cloud fraction (CF) is also reasonably simulated in CMIP6, but the comparison of liquid cloud fraction (LCF) reveals marked biases in spatial pattern and seasonal variations. The discrepancies between the CMIP6 models and the MODIS satellite observations become even larger in other cloud macro- and micro-physical properties, including liquid water path (LWP), cloud optical depth (COD), and cloud effective radius, as well as aerosol optical depth (AOD). However, the large underestimation of both LWP and cloud effective radius (regional means ∼20% and 11%, respectively) results in relatively smaller bias in COD, and the impacts of the biases in COD and LCF also cancel out with each other, leaving CRE and ASR reasonably predicted in CMIP6. An error estimation framework is employed, and the different signs of the sensitivity errors and biases from CF and LWP corroborate the notions that there are compensating errors in the modeled shortwave CRE. Further correlation analyses of the geospatial patterns reveal that CF is the most relevant factor in determining CRE in observations, while the modeled CRE is too sensitive to LWP and COD. The relationships between cloud effective radius, LWP, and COD are also analyzed to explore the possible uncertainty sources in different models. Our study calls for more rigorous calibration of detailed cloud physical properties for future climate model development and climate projection. 
    more » « less
  7. ZMP enables RNA-directed DNA methylation at pericentromeric repeats and prevents it from euchromatic regions. 
    more » « less