skip to main content

Search for: All records

Creators/Authors contains: "Wang, Yuanhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Depth estimation is fundamental to 3D perception, and humans are known to have biased estimates of depth. This study investigates whether convolutional neural networks (CNNs) can be biased when predicting the sign of curvature and depth of surfaces of textured surfaces under different viewing conditions (field of view) and surface parameters (slant and texture irregularity). This hypothesis is drawn from the idea that texture gradients described by local neighborhoods—a cue identified in human vision literature—are also representable within convolutional neural networks. To this end, we trained both unsupervised and supervised CNN models on the renderings of slanted surfaces with random Polka dot patterns and analyzed their internal latent representations. The results show that the unsupervised models have similar prediction biases as humans across all experiments, while supervised CNN models do not exhibit similar biases. The latent spaces of the unsupervised models can be linearly separated into axes representing field of view and optical slant. For supervised models, this ability varies substantially with model architecture and the kind of supervision (continuous slant vs. sign of slant). Even though this study says nothing of any shared mechanism, these findings suggest that unsupervised CNN models can share similar predictions to the human visual system. Code: 
    more » « less
    Free, publicly-accessible full text available August 5, 2024
  2. Smooth minimax games often proceed by simultaneous or alternating gradient updates. Although algorithms with alternating updates are commonly used in practice, the majority of existing theoretical analyses focus on simultaneous algorithms for convenience of analysis. In this paper, we study alternating gradient descent-ascent (Alt-GDA) in minimax games and show that Alt-GDA is superior to its simultaneous counterpart (Sim-GDA) in many settings. We prove that Alt-GDA achieves a near-optimal local convergence rate for strongly convex-strongly concave (SCSC) problems while Sim-GDA converges at a much slower rate. To our knowledge, this is the first result of any setting showing that Alt-GDA converges faster than Sim-GDA by more than a constant. We further adapt the theory of integral quadratic constraints (IQC) and show that Alt-GDA attains the same rate globally for a subclass of SCSC minimax problems. Empirically, we demonstrate that alternating updates speed up GAN training significantly and the use of optimism only helps for simultaneous algorithms. 
    more » « less
  3. Abstract

    The cyclopeptide alkaloids are cyclic depsipeptides incorporating cyclophanes with polyamide units 13‐, 14‐ and 15‐membered macrocyclic systems. Although various pharmacological activities have been ascribed to cyclopeptide alkaloids from plants of theRhamnaceafamily, these studies have been hampered by their low availability due to the lack of reasonable amounts distributed in nature. Therefore, novel and efficient synthetic approaches should be an important aim, which inspired us to examine how to diversely construct the unique structures of this type of natural products. In this account, several typical strategies are presented in terms of efficient, stereocontrolled and regioselective synthesis of cyclopeptide alkaloids.

    more » « less