skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yuanming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT In this paper, we present an optimized version of the detection pipeline for the ASKAP Variables and Slow Transients (VAST) survey, offering significant performance improvement. The key to this optimization is the replacement of the original w-projection algorithm integrated in the Common Astronomy Software Applications package with the w-stacking algorithm implemented in the WSClean software. Our experiments demonstrate that this optimization improves the overall processing efficiency of the pipeline by approximately a factor of 3. Moreover, the residual images generated by the optimized pipeline exhibit lower noise levels and fewer artefact sources, suggesting that our optimized pipeline not only enhances detection accuracy but also improves imaging fidelity. This optimized VAST detection pipeline is integrated into the Data Activated Liu Graph Engine (DALiuGE) execution framework, specifically designed for SKA-scale big data processing. Experimental results show that the performance and scalability advantages of the pipeline using DALiuGE over traditional MPI or BASH techniques increase with the data size. In summary, the optimized transient detection pipeline significantly reduces runtime, increases operational efficiency, and decreases implementation costs, offering a practical optimization solution for other ASKAP imaging pipelines as well. 
    more » « less
  2. ABSTRACT Several sources of repeating coherent bursts of radio emission with periods of many minutes have now been reported in the literature. These ‘ultralong period’ (ULP) sources have no clear multiwavelength counterparts and challenge canonical pulsar emission models, leading to debate regarding their nature. In this work, we report the discovery of a bright, highly polarized burst of radio emission at low Galactic latitude as part of a wide-field survey for transient and variable radio sources. ASKAP J175534.9$$-$$252749.1 does not appear to repeat, with only a single intense two-minute $$\sim$$200-mJy burst detected from 60 h of observations. The burst morphology and polarization properties are comparable to those of classical pulsars but the duration is more than one hundred times longer, analogous to ULPs. Combined with the existing ULP population, this suggests that these sources have a strong Galactic latitude dependence and hints at an unexplored population of transient and variable radio sources in the thin disc of the Milky Way. The resemblance of this burst with both ULPs and pulsars calls for a unified coherent emission model for objects with spin periods from milliseconds to tens of minutes. However, whether or not these are all neutron stars or have the same underlying power source remains open for debate. 
    more » « less
  3. Abstract We present the Sydney Radio Star Catalogue, a new catalogue of stars detected at megahertz to gigahertz radio frequencies. It consists of 839 unique stars with 3 405 radio detections, more than doubling the previously known number of radio stars. We have included stars from large area searches for radio stars found using circular polarisation searches, cross-matching, variability searches, and proper motion searches as well as presenting hundreds of newly detected stars from our search of Australian SKA Pathfinder observations. The focus of this first version of the catalogue is on objects detected in surveys using SKA precursor and pathfinder instruments; however, we will expand this scope in future versions. The 839 objects in the Sydney Radio Star Catalogue are distributed across the whole sky and range from ultracool dwarfs to Wolf-Rayet stars. We demonstrate that the radio luminosities of cool dwarfs are lower than the radio luminosities of more evolved sub-giant and giant stars. We use X-ray detections of 530 radio stars by the eROSITA soft X-ray instrument onboard the Spectrum Roentgen Gamma spacecraft to show that almost all of the radio stars in the catalogue are over-luminous in the radio, indicating that the majority of stars at these radio frequencies are coherent radio emitters. The Sydney Radio Star Catalogue can be found in Vizier or athttps://radiostars.org. 
    more » « less
  4. Abstract We report the discovery of a young, highly scattered pulsar in a search for highly circularly polarized radio sources as part of the Australian Square Kilometre Array Pathfinder Variables and Slow Transients survey. In follow-up observations with the Parkes radio telescope, Murriyang, we identified PSR J1032−5804 and measured a period of 78.7 ms, a dispersion measure of 819 ± 4 pc cm−3, a rotation measure of −2000 ± 1 rad m−2, and a characteristic age of 34.6 kyr. We found a pulse scattering timescale at 3 GHz of ∼22 ms, implying a timescale at 1 GHz of ∼3845 ms, which is the third most scattered pulsar known and explains its nondetection in previous pulsar surveys. We discuss the identification of a possible pulsar wind nebula and supernova remnant in the pulsar’s local environment by analyzing the pulsar spectral energy distribution and the surrounding extended emission from multiwavelength images. Our result highlights the possibility of identifying extremely scattered pulsars from radio continuum images. Ongoing and future large-scale radio continuum surveys will offer us an unprecedented opportunity to find more extreme pulsars (e.g., highly scattered, highly intermittent, and highly accelerated), which will enhance our understanding of the characteristics of pulsars and the interstellar medium. 
    more » « less
  5. Abstract Late-time (∼a year) radio follow-up of optically discovered tidal disruption events (TDEs) is increasingly resulting in detections at radio wavelengths, and there is growing evidence for this late-time radio activity to be common to the broad class of subrelativistic TDEs. Detailed studies of some of these TDEs at radio wavelengths are also challenging the existing models for radio emission. Using all-sky multiepoch data from the Australian Square Kilometre Array Pathfinder (ASKAP), taken as a part of the Rapid ASKAP Continuum Survey (RACS), we searched for radio counterparts to a sample of optically discovered TDEs. We detected late-time emission at RACS frequencies (742–1032 MHz) in five TDEs, reporting the independent discovery of radio emission from TDE AT 2019ahk and extending the time baseline out to almost 3000 days for some events. Overall, we find that at least 22 11 + 15 % of the population of optically discovered TDEs has detectable radio emission in the RACS survey, while also noting that the true fraction can be higher given the limited cadence (two epochs separated by ∼3 yr) of the survey. Finally, we project that the ongoing higher-cadence (∼2 months) ASKAP Variable and Slow Transients survey can detect ∼20 TDEs in its operational span (4 yr), given the current rate from optical surveys. 
    more » « less
  6. ABSTRACT Large widefield surveys make possible the serendipitous discovery of rare subclasses of pulsars. One such class are ‘spider’-type pulsar binaries, comprised of a pulsar in a compact orbit with a low-mass (sub)stellar companion. In a search for circularly polarized radio sources in Australian Square Kilometre Array Pathfinder (ASKAP) Pilot Survey observations, we discovered highly variable and circularly polarized emission from a radio source within the error region of the γ-ray source 4FGL J1646.5−4406. The variability is consistent with the eclipse of a compact, steep-spectrum source behind ablated material from a companion in an ∼5.3 h binary orbit. Based on the eclipse properties and spatial coincidence with 4FGL J1646.5−4406, we argue that the source is likely a recycled pulsar in a ‘redback’ binary system. Using properties of the eclipses from ASKAP and Murchison Widefield Array observations, we provide broad constraints on the properties of the eclipse medium. We identified a potential optical/infrared counterpart in archival data consistent with a variable low-mass star. Using the Parkes radio telescope ‘Murriyang’ and the Meer Karoo Array Telescope (MeerKAT) , we searched extensively for radio pulsations but yielded no viable detections of pulsed emission. We suggest that the non-detection of pulses is due to scattering in the intra-binary material, but scattering from the interstellar medium can also plausibly explain the pulse non-detections if the interstellar dispersion measure exceeds ∼600 pc cm−3. Orbital constraints derived from optical observations of the counterpart would be highly valuable for future γ-ray pulsation searches, which may confirm the source nature as a pulsar. 
    more » « less
  7. ABSTRACT We present results from a radio survey for variable and transient sources on 15-min time-scales, using the Australian SKA Pathfinder (ASKAP) pilot surveys. The pilot surveys consist of 505 h of observations conducted at around 1 GHz observing frequency, with a total sky coverage of 1476 deg2. Each observation was tracked for approximately 8 – 10 h, with a typical rms sensitivity of ∼30 μJy beam−1 and an angular resolution of ∼12 arcsec. The variability search was conducted within each 8 – 10 h observation on a 15-min time-scale. We detected 38 variable and transient sources. Seven of them are known pulsars, including an eclipsing millisecond pulsar, PSR J2039−5617. Another eight sources are stars, only one of which has been previously identified as a radio star. For the remaining 23 objects, 22 are associated with active galactic nuclei or galaxies (including the five intra-hour variables that have been reported previously), and their variations are caused by discrete, local plasma screens. The remaining source has no multiwavelength counterparts and is therefore yet to be identified. This is the first large-scale radio survey for variables and transient sources on minute time-scales at a sub-mJy sensitivity level. We expect to discover ∼1 highly variable source per day using the same technique on the full ASKAP surveys. 
    more » « less
  8. Abstract We present a systematic search for radio counterparts of novae using the Australian Square Kilometer Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, which covered the entire sky south of declination $$+41^{\circ}$$ ( $$\sim$$ $34000$ square degrees) at a central frequency of 887.5 MHz, the Variables and Slow Transients Pilot Survey, which covered $$\sim$$ $5000$ square degrees per epoch (887.5 MHz), and other ASKAP pilot surveys, which covered $$\sim$$ 200–2000 square degrees with 2–12 h integration times. We crossmatched radio sources found in these surveys over a two–year period, from 2019 April to 2021 August, with 440 previously identified optical novae, and found radio counterparts for four novae: V5668 Sgr, V1369 Cen, YZ Ret, and RR Tel. Follow-up observations with the Australian Telescope Compact Array confirm the ejecta thinning across all observed bands with spectral analysis indicative of synchrotron emission in V1369 Cen and YZ Ret. Our light-curve fit with the Hubble Flow model yields a value of $$1.65\pm 0.17 \times 10^{-4} \rm \:M_\odot$$ for the mass ejected in V1369 Cen. We also derive a peak surface brightness temperature of $$250\pm80$$ K for YZ Ret. Using Hubble Flow model simulated radio lightcurves for novae, we demonstrate that with a 5 $$\sigma$$ sensitivity limit of 1.5 mJy in 15-min survey observations, we can detect radio emission up to a distance of 4 kpc if ejecta mass is in the range $$10^{-3}\rm \:M_\odot$$ , and upto 1 kpc if ejecta mass is in the range $$10^{-5}$$ – $$10^{-3}\rm \:M_\odot$$ . Our study highlights ASKAP’s ability to contribute to future radio observations for novae within a distance of 1 kpc hosted on white dwarfs with masses $0.4$ – $$1.25\:\rm M_\odot$$ , and within a distance of 4 kpc hosted on white dwarfs with masses $0.4$ – $$1.0\:\rm M_\odot$$ . 
    more » « less
  9. ABSTRACT Solar radio emission at low frequencies (<1 GHz) can provide valuable information on processes driving flares and coronal mass ejections (CMEs). Radio emission has been detected from active M dwarf stars, suggestive of much higher levels of activity than previously thought. Observations of active M dwarfs at low frequencies can provide information on the emission mechanism for high energy flares and possible stellar CMEs. Here, we conducted two observations with the Australian Square Kilometre Array Pathfinder Telescope totalling 26 h and scheduled to overlap with the Transiting Exoplanet Survey Satellite Sector 36 field, utilizing the wide fields of view of both telescopes to search for multiple M dwarfs. We detected variable radio emission in Stokes I centred at 888 MHz from four known active M dwarfs. Two of these sources were also detected with Stokes V circular polarization. When examining the detected radio emission characteristics, we were not able to distinguish between the models for either electron cyclotron maser or gyrosynchrotron emission. These detections add to the growing number of M dwarfs observed with variable low-frequency emission. 
    more » « less
  10. null (Ed.)
    ABSTRACT We present the results from an Australian Square Kilometre Array Pathfinder search for radio variables on timescales of hours. We conducted an untargeted search over a 30 deg2 field, with multiple 10-h observations separated by days to months, at a central frequency of 945 MHz. We discovered six rapid scintillators from 15-min model-subtracted images with sensitivity of $$\sim\! 200\, \mu$$Jy/beam; two of them are extreme intra-hour variables with modulation indices up to $$\sim 40{{\ \rm per\ cent}}$$ and timescales as short as tens of minutes. Five of the variables are in a linear arrangement on the sky with angular width ∼1 arcmin and length ∼2 degrees, revealing the existence of a huge plasma filament in front of them. We derived kinematic models of this plasma from the annual modulation of the scintillation rate of our sources, and we estimated its likely physical properties: a distance of ∼4 pc and length of ∼0.1 pc. The characteristics we observe for the scattering screen are incompatible with published suggestions for the origin of intra-hour variability leading us to propose a new picture in which the underlying phenomenon is a cold tidal stream. This is the first time that multiple scintillators have been detected behind the same plasma screen, giving direct insight into the geometry of the scattering medium responsible for enhanced scintillation. 
    more » « less