skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weady, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper is associated with a poster winner of a 2023 American Physical Society's Division of Fluid Dynamics (DFD) Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available online at the Gallery of Fluid Motion, . Published by the American Physical Society2024 
    more » « less
  2. Vorticity, a measure of the local rate of rotation of a fluid element, is the driver of incompressible flow. In viscous fluids, powering bulk flows requires the continuous injection of vorticity from boundaries to counteract the diffusive effects of viscosity. Here we power a flow from within by suspending approximately cylindrical particles and magnetically driving them to rotate at Reynolds numbers in the intermediate range. We find that a single particle generates a localized three-dimensional region of vorticity around it—which we call a vortlet—that drives a number of remarkable behaviours. Slight asymmetries in the particle shape can deform the vortlet and cause the particle to self-propel. Interactions between vortlets are similarly rich, generating bound dynamical states. When a large number of vortlets interact, they spontaneously form collectively moving flocks. These flocks remain coherent while propelling, splitting and merging. If enough particles are added so as to saturate the flow chamber, a homogeneous three-dimensional active chiral fluid of vortlets is formed, which can be manipulated with gravity or flow chamber boundaries, leading to lively collective dynamics. Our findings demonstrate an inertial regime for synthetic active matter, provide a controlled physical system for the quantitative study of three-dimensional flocking in non-sentient systems and establish a platform for the study of three-dimensional active chiral fluids. 
    more » « less
  3. The recognizable shapes of landforms arise from processes such as erosion by wind or water currents. However, explaining the physical origin of natural structures is challenging due to the coupled evolution of complex flow fields and three-dimensional (3D) topographies. We investigate these issues in a laboratory setting inspired by yardangs, which are raised, elongate formations whose characteristic shape suggests erosion of heterogeneous material by directional flows. We combine experiments and simulations to test an origin hypothesis involving a harder or less erodible inclusion embedded in an outcropping of softer material. Optical scans of clay objects fixed within flowing water reveal a transformation from a featureless mound to a yardang-like form resembling a lion in repose. Phase-field simulations reproduce similar shape dynamics and show their dependence on the erodibility contrast and flow strength. Through visualizations of the flow fields and analysis of the local erosion rate, we identify effects associated with flow funneling and the turbulent wake that are responsible for carving the unique geometrical features. This highly 3D scouring process produces complex shapes from simple and commonplace starting conditions and is thus a candidate explanation for natural yardangs. The methods introduced here should be generally useful for geomorphological problems and especially those for which material heterogeneity is a primary factor. 
    more » « less