skip to main content

Search for: All records

Creators/Authors contains: "Webb, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 13, 2023
  2. Free, publicly-accessible full text available June 29, 2023
  3. ABSTRACT The E-isomer of cyanomethanimine (HNCHCN) was first identified in Sagittarius B2(N) (Sgr B2(N)) by a comparison of the publicly available Green Bank Telescope (GBT) PRIMOS survey with laboratory rotational spectra. Recently, Z-cyanomethanimine was detected in the quiescent molecular cloud G+0.693−0.027 with the IRAM 30-m telescope. Cyanomethanimine is a chemical intermediate in the proposed synthetic routes of adenine, and may play an important role in forming biological molecules in the interstellar medium. Here we present a new modelling study of cyanomethanimine, using the nautilus gas–grain reaction network and code with the addition of over 400 chemical reactions of the three cyanomethanimine isomers and related species. We apply cold isothermal core, hot core, and C-type shock models to simulate the complicated and heterogeneous physical environment in and in front of Sgr B2(N), and in G+0.693−0.027. We identify the major formation and destruction routes of cyanomethanimine, and find that the calculated abundances of the cyanomethanimine isomers and the ratio of Z-isomer to E-isomer are both in reasonable agreement with observations for selected environments. In particular, we conclude that these isomers are most likely formed within or near the hot core without the impact of shocks, or in the cold regions with shocks.
  4. Here, in ionically conducting Na 0.5 Bi 0.5 TiO 3 (NBT), we explore the link between growth parameters, stoichiometry and resistive switching behavior and show NBT to be a highly tunable system. We show that the combination of oxygen ionic vacancies and low-level electronic conduction is important for controlling Schottky barrier interfacial switching. We achieve a large ON/OFF ratio for high resistance/low resistance ( R HRS / R LRS ), enabled by an almost constant R HRS of ∼10 9 Ω, and composition-tunable R LRS value modulated by growth temperature. R HRS / R LRS ratios of up to 10 4 and pronounced resistive switching at low voltages (SET voltage of <1.2 V without high-voltage electroforming), strong endurance (no change in resistance states after several 10 3 cycles), uniformity, stable switching and fast switching speed are achieved. Of particular interest is that the best performance is achieved at the lowest growth temperature studied (600 °C), which is opposite to the case of most other perovskite oxides for memristors, where higher growth temperatures are required for optimum performance. This is understood based on the oxygen vacancy control of interfacial switching in NBT, whereas a range of other mechanisms (including filamentary switching)more »occur in other perovskites. The study of NBT has enabled us to determine key parameters for achieving high performance memristors.« less