skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Weiss, Jeremy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 26, 2026
  2. Free, publicly-accessible full text available August 1, 2025
  3. We consider the problem of predicting how the likelihood of an outcome of interest for a patient changes over time as we observe more of the patient’s data. To solve this problem, we propose a supervised contrastive learning framework that learns an embedding representation for each time step of a patient time series. Our framework learns the embedding space to have the following properties: (1) nearby points in the embedding space have similar predicted class probabilities, (2) adjacent time steps of the same time series map to nearby points in the embedding space, and (3) time steps with very different raw feature vectors map to far apart regions of the embedding space. To achieve property (3), we employ a nearest neighbor pairing mechanism in the raw feature space. This mechanism also serves as an alternative to "data augmentation", a key ingredient of contrastive learning, which lacks a standard procedure that is adequately realistic for clinical tabular data, to our knowledge. We demonstrate that our approach outperforms state-of-the-art baselines in predicting mortality of septic patients (MIMIC-III dataset) and tracking progression of cognitive impairment (ADNI dataset). Our method also consistently recovers the correct synthetic dataset embedding structure across experiments, a feat not achieved by baselines. Our ablation experiments show the pivotal role of our nearest neighbor pairing. 
    more » « less
  4. There has been increasing concern within the machine learning community and beyond that Artificial Intelligence (AI) faces a bias and discrimination crisis which needs AI fairness with urgency. As many have begun to work on this problem, most existing work depends on the availability of class label for the given fairness definition and algorithm which may not align with real-world usage. In this work, we study an AI fairness problem that stems from the gap between the design of a fair model in the lab and its deployment in the real-world. Specifically, we consider defining and mitigating individual unfairness amidst censorship, where the availability of class label is not always guaranteed due to censorship, which is broadly applicable in a diversity of real-world socially sensitive applications. We show that our method is able to quantify and mitigate individual unfairness in the presence of censorship across three benchmark tasks, which provides the first known results on individual fairness guarantee in analysis of censored data. 
    more » « less