Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Conspicuous sexual signals come with costs and benefits. Such signals increase reproductive success but may also reduce survival or viability. It has recently been suggested that non-signal traits may alleviate some of those costs (termed “compensatory traits”). In this perspective piece, we argue that biological rhythms should be considered in the milieu of compensatory traits, as they can reduce the natural selection burden of signaling. This may be particularly true for the many sexual signals that are ephemeral (i.e., only periodically present like a courtship dance). Biological rhythms (e.g., circadian and circannual rhythms) are ubiquitous in nature and help organisms perform the right activity at the right time—this includes the timing of many sexual signals and reproductive traits. Timing itself may, in fact, reduce the costs of such sexual signals. Here, we review sexual signals that are governed by biological rhythms and discuss how signal modality and type (ornament, weapon, dominance trait) account for differences in how chronobiology may act as a compensatory trait. We then consider how biologists might examine the untested role of chronobiology as a compensatory trait and set forth compelling questions for future work.more » « lessFree, publicly-accessible full text available January 7, 2026
-
Abstract Sensory drive can lead to the evolution of signals that are optimized to the environment in which they are perceived. However, when environmental conditions change, the interactions between signal, environment, and receiver may also shift, leading to the evolution of a new signal optimum or more categorical shifts in sexual signals (gains or losses). We evaluated how visual systems have evolved following a change in environment and male signal, and whether visual system divergence contributes to reproductive isolation between ancestral and derived types in red and black morphs of Pacific Northwest freshwater threespine stickleback. We found that opsin sequence was tuned to enhance the perceived contrast of black fish on a red-shifted light background, whereas opsin expression was not. Further, we found no evidence for homotypic preferences or assortative mating between colour morphs; males of both morphs were equally successful in no-choice mating contexts, perhaps because black males are more vigorous courters. Together, our results suggest that habitat transitions in black stickleback have led to a shift in sensory-drive dynamics with some aspects of the visual system and behaviour evolving in response to other factors (foraging or predation) or lagging behind the evolution of opsin sequences in red-shifted environments.more » « lessFree, publicly-accessible full text available September 1, 2025
-
The theory and practice of evolutionary tree-thinking is pervasive through many scientific fields and is a critical component of biological literacy. Many elements of tree-thinking are introduced early in undergraduate biology education. However, basic concepts are often not revisited/reinforced and are assumed to have been fully conceptually grasped in upper-level courses and beyond. Here, we present a project-based activity that we developed to aid upper-level biology students to learn, conceptualize, and practice tree-thinking. This approach allows them to identify the misconceptions that they may have about tree-thinking, while reinforcing the theories and concepts that they may have encountered in introductory courses. It also integrates several pedagogical styles (instructor-led and student-centered), along with an organismal case study to make concepts concrete and realistic to students.more » « less