skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wen, Wujie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 2, 2025
  2. Homomorphic Encryption (HE) is a promising technology to protect clients’ data privacy for Machine Learning as a Service (MLaaS) on public clouds. However, HE operations can be orders of magnitude slower than their counterparts for plaintexts and thus result in prohibitively high inference latency, seriously hindering the practicality of HE. In this paper, we propose a HE-based fast neural network (NN) inference framework–SpENCNN built upon the co-design of HE operation-aware model sparsity and the single-instruction-multiple-data (SIMD)-friendly data packing, to improve NN inference latency. In particular, we first develop an encryption-aware HE-group convolution technique that can partition channels among different groups based on the data size and ciphertext size, and then encode them into the same ciphertext by novel group-interleaved encoding, so as to dramatically reduce the number of bottlenecked operations in HE convolution. We further tailor a HE-friendly sub-block weight pruning to reduce the costly HE-based convolution operation. Our experiments show that SpENCNN can achieve overall speedups of 8.37×, 12.11×, 19.26×, and 1.87× for LeNet, VGG-5, HEFNet, and ResNet-20 respectively, with negligible accuracy loss. Our code is publicly available at https://github.com/ranran0523/SPECNN. 
    more » « less