Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper reports a novel Random Sample Consensus (RANSAC) algorithm for robust identification of second-order plant dynamical model parameters in the presence of unmodeled plant dynamics and noisy experimental data. Accurate plant dynamical models are essential to model-based control system design and for accurate numerical simulation of plant response. Studies of RANSAC approaches for plant model identification have been extremely limited and have not explored performance improvements in the presence of unmodeled dynamics. The performance of the proposed approach, evaluated in a preliminary simulation study of a planar aerial rotorcraft model, is found to be significantly more robust to the effects of unmodeled vehicle dynamics and outlier noise than conventional least squares parameter identification. We conjecture that the proposed approach may be broadly applicable to robust model parameter identification for a wide variety of plants that exhibit noisy sensor data and/or unmodeled dynamics.more » « less
-
This article addresses the problem of dynamic online estimation and compensation of hard-iron and soft-iron biases of three-axis magnetometers under dynamic motion in field robotics, utilizing only biased measurements from a three-axis magnetometer and a three-axis angular rate sensor. The proposed magnetometer and angular velocity bias estimator (MAVBE) utilizes a 15-state process model encoding the nonlinear process dynamics for the magnetometer signal subject to angular velocity excursions, while simultaneously estimating nine magnetometer bias parameters and three angular rate sensor bias parameters, within an extended Kalman filter framework. Bias parameter local observability is numerically evaluated. The bias-compensated signals, together with three-axis accelerometer signals, are utilized to estimate bias-compensated magnetic geodetic heading. Performance of the proposed MAVBE method is evaluated in comparison to the widely cited magnetometer-only TWOSTEP method in numerical simulations, laboratory experiments, and full-scale field trials of an instrumented autonomous underwater vehicle in the Chesapeake Bay, Maryland, USA. For the proposed MAVBE, (i) instrument attitude is not required to estimate biases, and the results show that (ii) the biases are locally observable, (iii) the bias estimates converge rapidly to true bias parameters, (iv) only modest instrument excitation is required for bias estimate convergence, and (v) compensation for magnetometer hard-iron and soft-iron biases dramatically improves dynamic heading estimation accuracy.more » « less
-
We report the development of novel fault detection and isolation (FDI) methods for model-based fault detection (MB-FD) and quotient-space fault isolation (QS-FI). This FDI approach performs MB-FD and QS-FI of single or multiple concurrent faults in plants and actuators simultaneously, without a priori knowledge of fault form, type, or dynamics. To detect faults, MB-FD characterizes deviation from nominal behavior using the plant velocity and plant and actuator parameters estimated by nullspace-based adaptive identification. To isolate (i.e. identify) faults, the QS-FI algorithm compares the estimated parameters to a nominal parameter class in progressively decreasing-dimensional quotient spaces of the parameter space. A preliminary simulation study of these proposed FDI methods applied to a three degree-of-freedom uninhabited underwater vehicle plant model shows their ability to detect as well as isolate faults for the cases of both single and multiple simultaneous faults and suggests the generalizability of the MB-FD and QS-FI approaches to any well-defined second-order plant and actuator model whose parameters enter linearly: a broad class of systems which includes aerial vehicles, marine vehicles, spacecraft, and robot arms.more » « less
An official website of the United States government
