skip to main content

Search for: All records

Creators/Authors contains: "White, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manufacturing continues to be a vital component of the Ohio economy. Ohio’s manufacturing sector employs over 600,000 skilled individuals, the third-largest manufacturing workforce in the U.S. [1]. With additional manufacturing industries moving into Ohio, including Intel and its supply chain partners, there is a growing need for industry-ready, skilled engineering technicians. In addition, with the increasing use of automated systems and network connectivity of these systems in manufacturing operations, technicians need to be equipped with skills in the area of smart manufacturing. This article details the development of a Smart Manufacturing Technology (SMT) associate’s degree that is modeled as an earnand- learn program. The program is equipped with various experiential learning opportunities, and additional industry-recognized certifications are embedded within specific courses. Summer camps were designed and delivered to expose middle and high school students to smart manufacturing and to build a pipeline of students into this program. A professional development summit was delivered each year of the grant. The purpose of the summit was to increase high school instructors’ awareness of smart manufacturing so that they can better advise students about this in-demand field and teach courses in the SMT pathway. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. null (Ed.)
    We introduce a mathematical modeling framework for the conformational dynamics of charged molecules (i.e., solutes) in an aqueous solvent (i.e., water or salted water). The solvent is treated as an incompressible fluid, and its fluctuating motion is described by the Stokes equation with the Landau–Lifschitz stochastic stress. The motion of the solute-solvent interface (i.e., the dielectric boundary) is determined by the fluid velocity together with the balance of the viscous force,hydrostatic pressure, surface tension, solute-solvent van der Waals interaction force, and electrostatic force. The electrostatic interactions are described by the dielectric Poisson–Boltzmann theory.Within such a framework, we derive a generalized Rayleigh–Plesset equation, a nonlinear stochastic ordinary differential equation (SODE), for the radius of a spherical charged molecule, such as anion. The spherical average of the stochastic stress leads to a multiplicative noise. We design and test numerical methods for solving the SODE and use the equation, together with explicit solvent molecular dynamics simulations, to study the effective radius of a single ion. Potentially, our general modeling framework can be used to efficiently determine the solute-solvent interfacial structures and predict the free energies of more complex molecular systems. 
    more » « less
  3. Abstract

    Oceanic oxygen minimum zones (OMZs) are globally significant sites of biogeochemical cycling where microorganisms deplete dissolved oxygen (DO) to concentrations <20 µM. Amid intense competition for DO in these metabolically challenging environments, aerobic nitrite oxidation may consume significant amounts of DO and help maintain low DO concentrations, but this remains unquantified. Using parallel measurements of oxygen consumption rates and15N-nitrite oxidation rates applied to both water column profiles and oxygen manipulation experiments, we show that the contribution of nitrite oxidation to overall DO consumption systematically increases as DO declines below 2 µM. Nitrite oxidation can account for all DO consumption only under DO concentrations <393 nM found in and below the secondary chlorophyll maximum. These patterns are consistent across sampling stations and experiments, reflecting coupling between nitrate reduction and nitrite-oxidizingNitrospinawith high oxygen affinity (based on isotopic and omic data). Collectively our results demonstrate that nitrite oxidation plays a pivotal role in the maintenance and biogeochemical dynamics of OMZs.

    more » « less
  4. We explore and compare different ways large-scale structure observables in redshift-space and real space can be connected. These include direct computation in La- grangian space, moment expansions and two formulations of the streaming model. We derive for the first time a Fourier space version of the streaming model, which yields an algebraic relation between the real- and redshift-space power spectra which can be compared to ear- lier, phenomenological models. By considering the redshift-space 2-point function in both configuration and Fourier space, we show how to generalize the Gaussian streaming model to higher orders in a systematic and computationally tractable way. We present a closed- form solution to the Zeldovich power spectrum in redshift space and use this as a framework for exploring convergence properties of different expansion approaches. While we use the Zeldovich approximation to illustrate these results, much of the formalism and many of the relations we derive hold beyond perturbation theory, and could be used with ingredients measured from N-body simulations or in other areas requiring decomposition of Cartesian tensors times plane waves. We finish with a discussion of the redshift-space bispectrum, bias and stochasticity and terms in Lagrangian perturbation theory up to 1-loop order. 
    more » « less
  5. Faint star-forming galaxies at z∼2–3 can be used as alternative background sources to probe the Lyα forest in addition to quasars, yielding high sightline densities that enable 3D tomographic reconstruction of the foreground absorption field. Here, we present the first data release from the COSMOS Lyα Mapping And Tomography Observations (CLAMATO) Survey, which was conducted with the LRIS spectrograph on the Keck I telescope. Over an observational footprint of 0.157 deg2 within the COSMOS field, we used 240 galaxies and quasars at 2.17<z<3.00, with a mean comoving transverse separation of 2.37 h-1 Mpc, as background sources probing the foreground Lyα forest absorption at 2.05<z<2.55. The Lyα forest data was then used to create a Wiener- filtered tomographic reconstruction over a comoving volume of 3.15 ́ 105 h-3 Mpc3 with an effective smoothing scale of 2.5 h-1 Mpc. In addition to traditional figures, this map is also presented as a virtual-reality visualization and manipulable interactive figure. We see large overdensities and underdensities that visually agree with the distribution of coeval galaxies from spectroscopic redshift surveys in the same field, including overdensities associated with several recently discovered galaxy protoclusters in the volume. Quantitatively, the map signal-to- noise is S Nwiener » 3.4 over a 3 h−1Mpc top-hat kernel based on the variances estimated from the Wiener filter. This data release includes the redshift catalog, reduced spectra, extracted Lyα forest pixel data, and reconstructed tomographic map of the absorption. These can be downloaded from Zenodo 
    more » « less

    We evaluate the consistency between lensing and clustering based on measurements from Baryon Oscillation Spectroscopic Survey combined with galaxy–galaxy lensing from Dark Energy Survey (DES) Year 3, Hyper Suprime-Cam Subaru Strategic Program (HSC) Year 1, and Kilo-Degree Survey (KiDS)-1000. We find good agreement between these lensing data sets. We model the observations using the Dark Emulator and fit the data at two fixed cosmologies: Planck (S8 = 0.83), and a Lensing cosmology (S8 = 0.76). For a joint analysis limited to large scales, we find that both cosmologies provide an acceptable fit to the data. Full utilization of the higher signal-to-noise small-scale measurements is hindered by uncertainty in the impact of baryon feedback and assembly bias, which we account for with a reasoned theoretical error budget. We incorporate a systematic inconsistency parameter for each redshift bin, A, that decouples the lensing and clustering. With a wide range of scales, we find different results for the consistency between the two cosmologies. Limiting the analysis to the bins for which the impact of the lens sample selection is expected to be minimal, for the Lensing cosmology, the measurements are consistent with A = 1; A = 0.91 ± 0.04 (A = 0.97 ± 0.06) using DES+KiDS (HSC). For the Planck case, we find a discrepancy: A = 0.79 ± 0.03 (A = 0.84 ± 0.05) using DES+KiDS (HSC). We demonstrate that a kinematic Sunyaev–Zeldovich-based estimate for baryonic effects alleviates some of the discrepancy in the Planck cosmology. This analysis demonstrates the statistical power of small-scale measurements; however, caution is still warranted given modelling uncertainties and foreground sample selection effects.

    more » « less
  7. Free, publicly-accessible full text available August 1, 2024
  8. ABSTRACT A deep survey of the Large Magellanic Cloud at ∼0.1–100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3–2.4 pending a flux increase by a factor of >3–4 over ∼2015–2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1–10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro–Frenk–White profiles. 
    more » « less
    Free, publicly-accessible full text available June 22, 2024
  9. A<sc>bstract</sc>

    A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb1of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of theWZ+ jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.

    more » « less
    Free, publicly-accessible full text available February 1, 2025
  10. In the next decade the peculiar velocities of SNe Ia in the local z<0.3 Universe will provide a measure of γ to ±0.01 precision that can definitively distinguish between General Relativity and leading models of alternative gravity. 
    more » « less