Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cancers in pet dogs are prevalent, progress rapidly, and closely resemble human cancers, positioning them as powerful models for precision oncology. While genetic drivers of human cancer often transcend histologic boundaries, most comparative studies have focused on matched cancer types, leaving the broader scope of genomic similarity unresolved. We performed the first exome-wide, histology-agnostic comparison of canine and human cancers, analyzing 429 dog and 14,966 human tumors across 39 types. Mutational signatures and genes under selection are widely shared between species, and cancer types are as genomically similar between species as within species, with no greater similarity within dog breeds than between breeds. Machine-learning models identify genetic features shared by dog and human tumors of different histologies, mirroring cross-histology patterns in human cancer. These findings establish dog cancer as a powerful system for genomics-informed precision oncology and support pan cancer approaches to discover translationally relevant models beyond histologic classification.more » « lessFree, publicly-accessible full text available October 15, 2026
-
With dramatic advancements in biological data generation, genetic rescue and reproductive technologies, and inter-institutional coordination of care across entire animal populations, zoos, aquariums, and their collaborators are uniquely positioned to lead population-wide research benefiting animal wellbeing and species survival. However, procedural and inter-institutional barriers make it exceedingly difficult to access existing zoological biospecimens and data at scale. To address this, the Zoonomics Working Group, representing diverse roles across three zoological associations (AZA, EAZA, WAZA), proposes a biodiversity biobank alliance that develops and delivers shared resources to support the collection, storage, and sharing of biological samples and associated data across the zoological and conservation community. By biobank alliance, we mean a community-guided effort that develops shared resources, standards, ethos, and practices for collecting, storing, and sharing biological samples and associated data voluntarily through transparent processes, consistent with professional accreditation standards and international best practices. While initially focused on addressing the needs and regulatory landscape of U.S. institutions, the alliance is designed to create frameworks that are adaptable and adoptable for international expansion. Such a framework would help the zoological community navigate the ethical, legal, and practical challenges of managing biospecimen collections, making access more efficient, reliable, and robust. Achieving this vision requires collective agreement on ethical principles such as reciprocity, transparency, and data stewardship, ensuring that research is both feasible and proactively supported. Such coordination will drive advances in fundamental biology and accelerate progress in animal health, welfare, management, and biodiversity conservation.more » « lessFree, publicly-accessible full text available October 28, 2026
-
null (Ed.)Nuisance periphyton growth influences the aesthetics, recreation, and aquatic life of waterbodies. Partners Lake is a shallow spring-fed lake in the headwaters of the Illinois River Watershed in Cave Springs, Arkansas, that experiences nuisance growth of periphyton (i.e., Spirogyra spp.) each year. The ratio of dissolved nitrogen (N ~5.0 mg L-1) and phosphorus (P ~0.030 mg L-1) in the lake water (N:P≥288), as well as nutrient limitation assays, suggests that periphyton growth should be P-limited. While the water column lacks sufficient P to promote growth, the sediments have the ability to release P to the overlying water; P-flux ranged from 1.63 mg m-2 d-1 to over 10 mg m-2 d-1, reaching final concentrations of 0.08 to 0.34 mg L-1. However, soluble reactive phosphorus concentrations were consistently at or below 0.030 mg L-1, in the lake, suggesting that the periphyton were likely immobilizing P as quickly as it was released from the sediments. In the lab, maximal periphyton growth (~30 to 35 mg m-2) occurred in the 0.10 to 0.25 mg L-1 P treatments, over a 6 day incubation period. Similar levels of growth occurred when lake sediments were the P source, suggesting P released from the sediments is sufficient to support nuisance algal growth. We need to begin managing the legacy P stored in the sediments, in addition to external P loads, because internal P can sustain nuisance periphyton biomass when N is not limiting.more » « less
An official website of the United States government
