Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 27, 2023
-
Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)The neutron activation method is well-suited to investigate neutron-capture cross sections relevant for the main s-process component. Neutrons can be produced via the 7 Li(p,n) reaction with proton energies of 1912 keV at e.g. Van de Graaff accelerators, which results in a quasi-Maxwellian spectrum of neutrons corresponding to a temperature of k B T = 25 keV. However, the weak s-process takes place in massive stars at temperatures between 25 and 90 keV. Simulations using the PINO code [2] suggest that a Maxwellian spectrum for higher energies, e.g. k B T = 90 keV, can be approximated by a linear combination of different neutron spectra. To validate the PINO code at proton energies E p ≠ 1912 keV, neutron time-of-flight measurements were carried out at the PTB Ion Accelerator Facility (PIAF) at the Physikalisch-Technische Bundesanstalt in Braunschweig, Germany.